Bài giảng lớp 7 môn Đại số - Tuần 9 - Tiết 3: Tiết 17 - Bài 11: Số vô tỷ. Khái niệm về căn bậc hai

Bài giảng lớp 7 môn Đại số - Tuần 9 - Tiết 3: Tiết 17 - Bài 11: Số vô tỷ. Khái niệm về căn bậc hai

1. Kiến thức:

- HS có khái niệm về số vô tỉ và hiểu thế nào là căn bậc hai của một số không âm.

- Biết sử dụng đúng kí hiệu .

2. Kỹ năng:

- Rèn kỹ năng tính toán và kĩ năng xác định căn bậc hai của một số không âm cho trước cho trước theo yêu cầu.

3. Tư duy - thái độ:

- Bồi dưỡng tính cẩn thận, trung thực, chính xác trong tính toán và biến đổi.

Có ý thức vận dụng các kiến thức đã học vàođời sống hàng ngày

doc 7 trang Người đăng linhlam94 Lượt xem 697Lượt tải 0 Download
Bạn đang xem tài liệu "Bài giảng lớp 7 môn Đại số - Tuần 9 - Tiết 3: Tiết 17 - Bài 11: Số vô tỷ. Khái niệm về căn bậc hai", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn : 23/10/2009
Tuần dạy thứ : 9
Tiết 17 Đ11 . Số vô tỷ.Khái niệm về căn bậc hai
Mục tiêu.
Kiến thức :
HS có khái niệm về số vô tỉ và hiểu thế nào là căn bậc hai của một số không âm. 
Biết sử dụng đúng kí hiệu .
Kỹ năng :
Rèn kỹ năng tính toán và kĩ năng xác định căn bậc hai của một số không âm cho trước cho trước theo yêu cầu.
Tư duy - thái độ :
Bồi dưỡng tính cẩn thận, trung thực, chính xác trong tính toán và biến đổi.
Có ý thức vận dụng các kiến thức đã học vàođời sống hàng ngày.
Phương tiện dạy học.
Các phương tiện cần sử dụng trong dạy học:
Giáo viên:
Bảng phụ (hoặc đèn chiếu, giấy trong) vẽ hình 5, kết luận về căn bậc hai và ghi đề bài tập.
Thước thẳng, phấn màu, máy tính. Bảng từ, nam châm để chơi “trò chơi”.
Học sinh:
Ôn tập định nghĩa số hữu tỉ, quan hệ giữa số hữu tỉ và số thập phân
Bảng nhóm (hoặc giấy nháp), máy tính bỏ túi.
Nội dung các phiếu học tập - bảng phụ:
Bảng phụ vẽ hình 5 SGK.
Bảng phụ ghi kết luận SGK
- Bảng phụ ghi đề bài tập phần củng cố : Bài 82, Bài 83 SGK .
* Bài 82 SGK tr 41 : Hoàn thành theo mẫu:
a) Vì 52 = .. nên = 5; b) Vì 7. = 49 nên ... = 7;
c) Vì 7 = 1 nên =. d) Vì nên . = .
* Bài 83 SGK tr 41 : Tính theo mẫu (SGK tr41) :
 a)          b)  c) d)     e) .
Tiến trình dạy học.
Hoạt động của GV
Hoạt động của HS
Nội dung ghi bảng
HĐ 1 : Kiểm tra bài cũ (7’)
-Câu hỏi: 
+Thế nào là số hữu tỉ?
+Phát biểu kết luận về quạn hệ giữa số hữu tỉ và số thập phân.
+Viết các số hữu tỉ sau dưới dạng số thập phân: ; 
-Cho nhận xét và cho điểm.
-ĐVĐ: Hãy tính 12; 
Vậy có số hữu tỉ nào mà bình phương bằng 2 không? Bài học hôm nay sẽ cho chúng ta câu trả lời.
-Một HS lên bảng:
+Số hữu tỉ là số viết được dưới dạng phân số với a, b ẻ Z ; b ạ 0
+Phát biểu: Một số hữu tỉ được biểu diễn bởi 1 số thập phân hữu hạn hoặc vô hạn tuần hoàn và ngược lại.
 + = 0,75 ; = 1,(54)
-Nhận xét bài làm của bạn.
-Tính: 12 = 1 ; = = 
- Theo dõi và ghi bài. 
HĐ2: Số vô tỉ (10’)
-Xét bài toán: Cho hình 5. 
+Tính S hình vuông ABCD. +Tính độ dài đường chéo AB ?
-Gợi ý: 
+Tính S hình vuông AEBF.
+Diện tích AEBF và ABCD = mấy lần diện tích tam giác ABF ?
+Vậy S hình vuông ABCD bằng bao nhiêu?
Người ta chứng minh được là không có số hữu tỷ nào mà bình phương bằng 2 và 
x = 1,41421356237..
đây là số thập phân vô hạn không tuần hoàn, và những số như vậy gọi là số vô tỷ.
Như vậy số vô tỷ là số như thế nào ?
Gv giới thiệu tập hợp các số vô tỷ được ký hiệu là I.
-Đọc đầu bài và xem hình 5 GV đưa ra.
-Làm theo hướng dẫn của GV.
+S AEBF = 1. 1 = 1 (m2)
+S AEBF = 2 S ABF.
 +S ABCD = 4 S ABF.
Vậy S ABCD = 2S AEBF 
 S ABCD = 2 . 1 (m2)
 = 2(m2)
Số vô tỷ là số viết được dưới dạng thập phân vô hạn không tuần hoàn.
I.Số vô tỉ: 
 E 1m B
 1m x?
 A F C
 D
a)Tính S ABCD?
b)Tính độ dài AB ?
Số vô tỷ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.
Tập hợp các số vô tỷ được ký hiệu là I.
HĐ3: Khái niệm về căn bậc hai (15’):
Ta thấy: 32 = 9 ; (-3)2= 9. Ta nói số 9 có hai căn bậc hai là 3 và -3.
Hoặc 52 = 25 và (-5)2 = 25. Vậy số 25 có hai căn bậc hai là 5 và -5.
Tìm hai căn bậc hai cđa 16; 49?
Gv giới thiệu số dương a có đĩng hai căn bậc hai. Một số dương ký hiệu là và một số âm ký hiệu là .
Lưu ý học sinh không được viết 
Trở lại ví dụ trên ta có:
 x2 = 2 
=> x = và x = 
Hai căn bậc hai cđa 16 là 4 và -4.
Hai căn bậc hai cđa 49 là 7 và -7.
II.Khái niệm về căn bậc hai:
Định nghĩa:
Căn bặc hai của một số a không âm là số x sao cho
 x2 = a .
VD: 5 và -5 là hai căn bặc hai của 25.
Chú ý:
+ Số dương a có đúng hai căn bậc hai là và .
+Số 0 chỉ có một căn bậc hai là: 
+Các số  là những số vô tỷ.
+ Không được viết 
HĐ 3: Luyện tập củng cố (10’)
Nhắc lại thế nào là số vô tỷ, khái niệm căn bậc hai của số không âm a
Làm bài tập 82; 83 SGK 
GV treo bảng phụ , yêu cầu 1 HS lên điền , các HS khác điền vào vở bài tập
Tổ chức cho Hs nhận xét, bổ sung. GV lưu ý kĩ năng tính toán và trình bày.
- Hs nhắc lại thế nào là số vô tỷ, khái niệm căn bậc hai của số không âm a.
- Hs làm bài tập 82, 83 theo hướng dẫn của giáo viên.
- 1 HS lên điền , các HS khác điền vào vở bài tập
Hs nhận xét, bổ sung
* Bài 82 SGK trang 41: Hoàn thành bài tập theo mẫu: 
a) Vì 52 = .. nên = 5;
b) Vì 7 = 49 nên .. = 7;
c) Vì 7 = 1 nên =.
d) Vì nên  = 
* Bài 83 SGK tr 41 : 
Tính theo mẫu (SGK tr41) :
a)         b)  
 c) d)    e) 
Hướng dẫn công việc ở nhà (3’)
Học bài theo SGK kết hợp với vở ghi.
Nắm vững thế nào là số vô tỷ, khái niệm căn bậc hai của số không âm a.
BTVN: 84,85,86 trang 41 SGK; 106 --> 110 trang 18,19 SBT. 
Tiết sau mang máy tính bỏ túi. 
Lưu ý khi sử dụng giáo án :
Các rút kinh nghiệm sau khi dạy xong tiết này:
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................
Ngày soạn : 23/10/2009
Tuần dạy thứ : 9
Tiết 18: Số thực 
Mục tiêu.
Kiến thức :
HS biết được số thực là tên gọi chung cho cả số hữu tỉ và số vô tỉ; biết được biểu diễn thập phân của số thực. Hiểu được ý nghĩa của trục số thực.
Thấy được sự phát triển của hệ thống số từ N đến Z, Q và R.
Kỹ năng :
- Rèn kỹ năng tính toán và kĩ năng làm tròn số theo yêu cầu.
- Rèn kĩ năng so sánh hai số thực ở dạng số thập phân vô hạn, kĩ năng biểu diễn số thực trên trục số 
Tư duy - thái độ :
Bồi dưỡng tính cẩn thận, trung thực, chính xác trong tính toán và biến đổi.
Phương tiện dạy học.
Các phương tiện cần sử dụng trong dạy học:
Giáo viên:
Bảng phụ (hoặc đèn chiếu, giấy trong) ghi đề bài tập, 
Máy tính bỏ túi, com pa.
Học sinh:
Bảng nhóm (giấy nháp), máy tính bỏ túi.
Thước kẻ, com pa
Nội dung các phiếu học tập - bảng phụ:
- Bảng phụ ghi nội dung kiểm tra bài cũ.
- Bảng phụ ghiđề bài tập củng cố:
 BT sau:(bảng phụ)
Điền các dấu ( ẻ, ẽ, è ) thích hợp vào ô trống:
3  Q ; 3  R ; 3  I
-0,25  Q ; 0,2(35)  I
 N  Z ; I  R
- Bảng phụ vẽ hình 7 SGK.
- Bảng phụ ghi đề bài tập cần củng cố : Bài 89 trang 45 SGK
Tiến trình dạy học.
Hoạt động của GV
Hoạt động của HS
Nội dung ghi bảng
HĐ 1 : Kiểm tra bài (8’)
-Câu 1: 
 +Nêu định nghĩa căn bậc hai của một số a ³ 0
 +Tính:
 a) b) 
 c) d) 
 e) f) 
 -Câu 2: 
+Nêu quan hệ giữa số hữu tỉ, số vô tỉ với số thập phân.
+Cho hai ví dụ về số hữu tỉ, 1 ví dụ về số vô tỉ, viết số đó dưới dạng thập phân.
-Cho nhận xét và cho điểm.
-ĐVĐ: Số hữu tỉ và số vô tỉ tuy khác nhau nhưng được gọi chung là số thực. Bài này cho ta hiểu thêm về số thực.
- HS 1:
+Định nghĩa: Căn bậc hai của một số a không âm là số x sao cho x2 = a
 +Tính:
 a) = 9 b) = 90
 c) = 8 d) = 0,8
 e) = f) = 
 -HS 2:
+Phát biểu: Số hữu tỉ viết được dưới dạng STP hữu hạn hoặc vô hạn tuần hoàn, số vô tỉ viết được dưới dạng STP vô hạn không tuần hoàn.
+Ví dụ: Số hữu tỉ 2,5 ; 1,(32)
 Số vô tỉ = 1,7320508
(HS có thể làm bằng máy tính)
-Nhận xét bài làm của bạn.
-Lắng nghe GV đặt vấn đề.
HĐ 2: Số thực (20’).
-Hãy lấy thêm ví dụ về số tự nhiên, số nguyên âm, phân số, STP hữu hạn, STP vô hạn tuần hoàn, số vô tỉ.
-Tất cả các số trên đều được gọi chung là số thực. Tập hợp số thực kí hiệu là R.
-Hỏi: Vậy tất cả các tập hợp số đã học N, Z, Q, I quan hệ thế nào với R?
-Yêu cầu làm ?1 .
-Hỏi x có thể là những số nào?
-Cho làm BT sau:(bảng phụ)
Điền các dấu ( ẻ, ẽ, è ) thích hợp vào ô trống:
3  Q ; 3  R ; 3  I
-0,25  Q ; 0,2(35)  I
 N  Z ; I  R
-Hỏi: So sánh hai số thực x, y bất kỳ có thể xảy ra các khả năng nào?
-Vì bất kì số thực nào cũng viết được dưới dạng STP. Nên so sánh hai số thực giống như so sánh hai số hữu tỉ viết dưới dạng STP.
-Yêu câu đọc ví dụ SGK và nêu cách so sánh.
-Yêu cầu làm ?2 . So sánh
a)2,(35) và 2,369121518...
b)-0,(63) và - 
-Giới thiệu hai số dương a, b nếu a > b thì > 
-Hãy so sánh 4 và 
-HS lấy ví dụ theo yêu cầu của GV.
-Ghi ví dụ và kí hiệu tập số thực.
-Trả lời: Các tập hợp số đã học N, Z, Q, I đều là tập con của R.
-Tự trả lời ?1 
-Trả lời: x có thể là số hữu tỉ hoặc vô tỉ.
-3 HS đọc kết quả điền dấu thích hợp.
-HS khác nhận xét.
-Trả lời: So sánh hai số thực x, y bất kỳ có thể xảy ra các khả năng hoặc x = y hoặc x y.
-Đọc ví dụ SGK.
-Đại diện HS nêu cách so sánh.
-Tự làm ?2 .
-2 HS trả lời và giải thích cách so sánh.
-HS làm thêm câu c
1.Số thực: 
a)VD: 0; 2; -4 ; ; 0,3; 1,(25); ; .
-Số hữu tỉ, số vô tỉ gọi chung là số thực
-Kí hiệu tập số thực: R
?1 : 
Viết x ẻ R hiểu x là số thực
-BT: Điền đấu (ẻ;ẽ;è) thích hợp.
3 ẻ Q ; 3 ẻ R ; 3 ẽ I
-0,25 ẻ Q ; 0,2(35) ẽ I
 N è Z ; I è R
b)So sánh số thực:
-Với x, y b.kì ẻ R ị hoặc x = y hoặc x y.
-VD: 
a)0,3192...< 0,32(5)
b)1,24598...>1,24596...
?2 So sánh
a)2,(35) < 2,369121518...
b)-0,(63) = - 
-Với a, b >0, 
 Nếu a > b thì > 
c)4 = > 
 vì 16 >13
HĐ3 : trục số thực (10 ph)
-ĐVĐ: Đẵ biết cách biểu diễn một số hữu tỉ trên trục số. Vậy có thể biểu diễn được số vô tỉ trên trục số không?
-Yêu cầu đọc SGK, xem hình 6a, 6b trang 43, 44.
-GV vẽ trục số lên bảng, yêu cầu 1 HS lên bảng biểu diễn số trên trục số.
-Vậy qua VD thấy số hữu tỉ có lấp đầy trục số không?
-Đưa hình 7 SGK lên bảng.
-Hỏi: Ngoài số nguyên, trên trục số này còn biểu diễn các số hữu tỉ nào? Các số vô tỉ nào?
-Đọc SGK.
-Vẽ hình 6b vào vở.
-1 HS lên bảng biểu diễn số trên trục số.
-NX: Số hữu tỉ không lấp đầy trục số.
-Trả lời: Ngoài số nguyên, trên trục số này có biểu diễn các số hữu tỉ: ; 0,3 ; : 4,1(6) các số vô tỉ -; 
2.Trục số thực:
VD: Biểu diễn số trên trục số.
 -1 0 1 2
-Mỗi số thực được biểu diễn bởi 1 điểm trên trục số.
-Mỗi điểm trên trục số đều biểu diễn 1 số thực. Ta nói trục số thực.
-Chú ý: SGK trang 44
HĐ4:Củng cố_Luyện tập (5’)
-Hỏi: 
+Tập hợp số thực bao gồm những số nào?
+Vì sao nói trục số là trục số thực?
-Yêu cầu làm BT 89/45 SGK:
Trong các câu sau, câu nào đúng, câu nào sai?
Đưa đầu bài lên bảng phụ.
-Trả lời:
+Tập hợp số thực bao gồm số hữu tỉ và số vô tỉ.
+Nói trục số là trục số thực vì các điểm biểu diễn số thực lấp đầy trục số.
-Làm BT 89/45 SGK.
-Trả lời:
a)Đúng.
b)Sai, vì ngoài số 0, số vô tỉ cũng không là số hữu tỉ dương và cũng không là số hữu tỉ âm.
c)Đúng.
BT 89/45 SGK:
a)Đúng.
b)Sai, vì ngoài số 0, số vô tỉ cũng không là số hữu tỉ dương và cũng không là số hữu tỉ âm.
c)Đúng.
Hướng dẫn công việc ở nhà (2’)
Học bài theo SGK kết hợp với vở ghi.
Nắm vững số thực gồm số hữu tỉ và số vô tỉ. Tất cả các số đã học đều là số thực. Nắm vững cách so sánh số thực. Trong R cũng có các phép toán với các tính chất tương tự như trong Q.
BTVN: 90, 91, 92 trang 45 SGK; số 117, 118 trang 20 SBT. 
Ôn lại định nghĩa: Giao của hai tập hợp, tính chất của đẳng thức, bất đẳng thức (Toán 6).
Lưu ý khi sử dụng giáo án :
Phải lưu ý phân phối thời gian của giáo án để đảm bảo đúng tiến trình.
Với Hs trình độ về kiến thức và kĩ năng chưa thạo thì giáo viên có thể giảm tải nội dung luyện tập tập trung vào việc truyền thụ kiến thức mới.
Các rút kinh nghiệm sau khi dạy xong tiết này:
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ..................................................................................................................................................................................................
	 Kí duyệt
	 Ngày /10/2009

Tài liệu đính kèm:

  • docTuan 9.doc