I - MỤC TIÊU:
1. Kiến thức: - HS biết sự tồn tại của số thập phân vô hạn không tuần hoàn và tên gọi là số vô tỉ; biết thế nào là căn bậc hai của một số không âm. Sử dụng đúng kí hiệu căn ()
2. Kĩ năng: - Biết tìm căn bậc hai theo mẫu và bằng máy tính bỏ túi.
3. Thỏi độ: - Nghiờm tỳc, linh hoạt
II - ĐỒ DÙNG DẠY HỌC:
- GV: Bảng phụ có ghi nội dung vớ dụ bài 82, máy tính bỏ túi
- HS: Máy tính bỏ túi
III – PHƯƠNG PHÁP DẠY HỌC: Đặt và giải quyết vấn đề, vấn đáp tìm tòi
IV- TỔ CHỨC GIỜ HỌC:
Tiết 17: Ngày soạn: 09/10/2010 Ngày giảng: 7A: 14/10/2010; 7B: 11/10/2010 Tiết 17. Số vô tỉ. khái niệm về căn bậc hai I - Mục tiêu: 1. Kiến thức: - HS biết sự tồn tại của số thập phân vô hạn không tuần hoàn và tên gọi là số vô tỉ; biết thế nào là căn bậc hai của một số không âm. Sử dụng đúng kí hiệu căn () 2. Kĩ năng: - Biết tìm căn bậc hai theo mẫu và bằng máy tính bỏ túi. 3. Thỏi độ: - Nghiờm tỳc, linh hoạt II - Đồ dùng dạy học: - GV: Bảng phụ có ghi nội dung vớ dụ bài 82, máy tính bỏ túi - HS: Máy tính bỏ túi III – phương pháp dạy học: Đặt và giải quyết vấn đề, vấn đáp tìm tòi IV- Tổ chức giờ học: 1. Khởi động + Mục tiêu: HS nhớ lại quan hệ giữa số hữu tỉ và số thập phân. Bước đầu nhận biết số vô tỉ + Thời gian: 2’ + Cách tiến hành: GV đặt vấn đề vào bài: Giờ trước chúng ta đã biết một số hữu tỉ có thể viết dưới dạng số thập phân hữu hạn hoặc số thập phân vô hạn tuần hoàn và ngược lại. Vậy còn dạng số thập phân nào khác không và nó được gọi là gì => vào bài. 2. Hoạt động 1: Số vụ tỉ là gỡ? - Mục tiờu: Học sinh có khái niệm về số vô tỉ. - Thời gian: 12 phỳt - Cỏch tiến hành: HĐ của giỏo viờn HĐ của học sinh - GV treo bảng phụ hình vẽ bài toán ? Tính diện tích hình vuông AEBF. - Nhỡn hỡnh vẽ, ta thấy S hỡnh vuụng AEBF bằng 2 lần S tam giỏc ABF. Cũn S hỡnh vuụng ABCD bằng 4 lần S tam giỏc ABF. - Vậy S hỡnh vuụng ABCD bằng bao nhiờu? ? Gọi độ dài AB là x, biểu thị SABCD qua x - GV đưa ra số x = 1,41421356... giới thiệu đây là số vô tỉ. ? Số vô tỉ là gì. - GV nhấn mạnh: Số thập phân gồm: số thập phân hữu hạn số thập phõn vô hạn tuần hoàn là cỏc số hữu tỉ số thập phõn vô hạn không tuần hoàn: Số vụ tỉ. 1. Số vô tỉ Bài toán a) Tớnh b) Tớnh độ dài đường chộo AB - S hỡnh vuụng AEBF bằng 1. 1 = 1( ) - S hỡnh vuụng ABCD gấp 2 lần S hỡnh vuụng AEBF, vậy S hỡnh vuụng ABCD bằng: 2. 1 = 2() x2 = 2 x = 1,41421356.... đây là số vô tỉ. - Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn. - Tập hợp các số vô tỉ là I 3. Hoạt động 2: Tỡm hiểu khỏi niệm căn bậc hai - Mục tiờu: HS biết thế nào là căn bậc hai của một số không âm. Sử dụng đúng kí hiệu căn () - Thời gian: 20 phỳt - Cỏch tiến hành: HĐ của giỏo viờn HĐ của học sinh - Yêu cầu HS tính 32 và (3)2. - GV thông báo 3 và 3 là căn bậc hai của 9 ? Tính: ? ; 0 là các căn bậc hai của các số nào. ? Tìm x biết x2 = 1. ? Vậy các số như thế nào thì có căn bậc hai ? Căn bậc hai của 1 số không âm là 1 số như thế nào. - Yêu cầu HS làm ?1 ? Mỗi số a dương có mấy căn bậc hai. ? Số 0 có mấy căn bậc hai. - Giáo viên thông báo chú ý. - HS làm ?2 ? Viết các căn bậc hai của 3; 10; 25 - Giáo viên: Có thể chứng minh được là các số vô tỉ. Vậy có bao nhiêu số vô tỉ. 2. Khái niệm căn bậc hai Ta có: 32 = 9 ; (3)2 = 9 Ta nói rằng 3 và -3 là căn bậc hai của 9 là cỏc căn bậc hai của Khụng cú x vỡ khụng cú số nào bỡnh phương lờn bằng (-1 ) - Chỉ có số không âm mới có căn bậc hai Định nghĩa: Căn bậc hai của một số không âm a là số x sao cho x2 = a. ?1 Căn bậc hai của 16 là 4 và 4 Kết luận: - Số a > 0 có 2 căn bậc hai là . - Số 0 chỉ có 1 căn bậc hai là - Số a < 0 không có căn bậc hai. Chú ý: Không được viết . Chỉ viết là: và . ?2 - Căn bậc hai của 3 là và - Căn bậc hai của 10 là và - Căn bậc hai của 25 là và . - Có vô số các số vô tỉ như , 4. Hoạt động 3: Củng cố - Mục tiờu: - Biết tìm căn bậc hai theo mẫu và bằng máy tính bỏ túi - Thời gian: 10 phỳt - Cỏch tiến hành: HĐ của giỏo viờn HĐ của học sinh - Y/c HS làm bài 82 ( Y/c HS hoạt động theo nhúm) - Các nhóm báo cáo kết quả - GV chữa bài - GV hướng dẫn HS tìm căn bậc hai bằng máy tính bỏ túi - Y/c HS hoạt động cá nhân, tự thực hiện bài 86 Bài 82 (Sgk - T.41) HS hoạt động theo nhúm a) Vì 52 = 25 nên b) Vì 72 = 49 nên c) Vì 12 = 1 nên d) Vì nên Bài 86 (Sgk - T.42) 5. Hướng dẫn về nhà: - Cần nắm vững căn bậc hai của 1 số khụng õm, so sỏnh phõn biệt số hữu tỉ và số vụ tỉ. - Đọc mục cú thể em chưa biết - Làm bài 83, 84 SGK – TR41,42 ****************************** Ngày soạn: 11/10/2010 Ngày giảng: 7A: 15/10/2010; 7B: 13/10/2010 TIẾT 18. Số thực I. Mục tiêu: 1. Kiến thức: - Học sinh biết được rằng tập hợp số thực bao gồm tất cả các số hữu tỉ và vô tỉ. Biết được sự tương ứng 1-1 giữa tập hợp R và tập hợp các điểm trên trục số. 2. Kĩ năng: - Thấy được sự phát triển của hệ thống số từ N Z Q R; Biết so sánh số thực. 3. Thỏi độ: - Linh hoạt trong tớnh toỏn II - Đồ dùng dạy học: - GV: Thước mét, bảng phụ có ghi nội dung vớ dụ bài 81 - HS: Máy tính III – phương pháp dạy học: Đặt và giải quyết vấn đề, vấn đáp tìm tòi IV- Tổ chức giờ học: 1. Khởi động + Mục tiêu: HS nhớ lại quan hệ giữa số hữu tỉ số vô tỉ và số thập phân. + Thời gian: 5’ + Cách tiến hành: Kiểm tra bài cũ: - Nờu quan hệ giữa số hữu tỉ và số vụ tỉ với số thập phõn? GV đặt vấn đề vào bài: - Số hữu tỉ và số vụ tỉ tuy khỏc nhau nhưng được gọi chung là số thực.Bài nỏy sẽ cho ta hiểu thờm về số thực, cỏch so sỏnh hai số thực 2. Hoạt động 1: Số thực là gỡ? - Mục tiờu: - Học sinh biết được rằng tập hợp số thực bao gồm tất cả các số hữu tỉ và vô tỉ. Biết so sánh số thực. - Thời gian: 20 phỳt - Cỏch tiến hành: HĐ của giỏo viờn HĐ của học sinh - GV thông báo khái niệm số thực và kí hiệu tập số thực. ? Chỉ ra các số hữu tỉ , số vô tỉ ? Nêu quan hệ của các tập N, Z, Q, I với R - Yêu cầu HS làm ?1 - HS đứng tại chỗ trả lời ? x có thể là những số nào. - Yêu cầu làm bài tập 87 (SGK-Trang 44). ? Cho 2 số thực x và y, có những trường hợp nào xảy ra. - Học sinh suy nghĩ trả lời - GV thông báo việc so sánh 2 số thực tương tự như so sánh 2 số hữu tỉ viết dưới dạng số thập phân . ? Nhận xét phần nguyên, phần thập phân rồi so sánh. - Yêu cầu HS làm ?2 - Cả lớp làm bài ít phút, sau đó 2 HS lên bảng làm. 1. Số thực - Số hữu tỉ và số vô tỉ gọi chung là số thực - Kí hiệu tập số thực là R: Ví dụ: các số: 2; 5; ; 0,234; 1,(45); ; ... - Như vậy ?1 Cách viết x R cho ta biết x là số thực x có thể là số hữu tỉ hoặc số vô tỉ - Với 2 số thực x và y bất kì ta luôn có hoặc x = y hoặc x > y hoặc x < y. Ví dụ: So sánh 2 số a) 0,3192... < 0,32(5) b) 1,24598... > 1,24596... ?2 a) 2,(35) < 2,369121518... b) -0,(63) và Ta có 3. Hoạt động 2: Cỏch biểu diễn số thực - Mục tiờu: Biết được sự tương ứng 1-1 giữa tập hợp R và tập hợp các điểm trên trục số. - Thời gian: 10 phỳt - Cỏch tiến hành: HĐ của giỏo viờn HĐ của học sinh - GV đặt vấn đề việc biểu diễn số vô tỉ trên trục số. - Học sinh nghiên cứu cách biểu diễn số vô tỉ trong SGK - Giáo viên hướng dẫn học sinh biểu diễn. - Giáo viên nêu ra một số thông tin về trục số thự.: GV nêu ra chú ý về các phép toán trong tập hợp số thực. 2. Trục số thực Ví dụ: Biểu diễn số trên trục số. - Mỗi số thực được biểu diễn bởi 1 điểm trên trục số. - Mỗi điểm trên trục số đều biểu diễn 1 số thực. - Trục số gọi là trục số thực. Chú ý: Trong tập hợp các số thực cũng có các phép toán với các tính chất tương tự như trong tập hợp các số hữu tỉ. Tập hợp số thực bao gồm số vụ tỉ và số hữu tỉ. - Núi trục số là trục số thực vỡ cỏc điểm biểu diễn số thực lấp đầy trục số. 4. Hoạt động 3: Củng cố - Mục tiờu: - Thấy được sự phát triển của hệ thống số từ N Z Q R. - Thời gian: 8 phỳt - Cỏch tiến hành: HĐ của giỏo viờn HĐ của học sinh - Y/c HS làm bài 87 ( Y/c HS hoạt động theo nhúm) - Các nhóm báo cáo kết quả - GV chữa bài Bài 87 (Sgk - T.44) HS hoạt động theo nhúm 3 Q ; 3R ; 3 I ; -2,53Q; 0.2(35) I ; NZ; IR. 5. Hướng dẫn về nhà: - Cần nắm vững căn bậc hai của 1 số khụng õm, so sỏnh phõn biệt số hữu tỉ và số vụ tỉ; So sánh số thực. - Làm bài 88, 89, 92 SGK – TR44,45 ******************************
Tài liệu đính kèm: