Chuyên đề:
TỈ LỆ THỨC-TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU
A. CƠ SỞ LÍ THUYẾT
I. TỈ LỆ THỨC
1. Định nghĩa:
Tỉ lệ thức là một đẳng thức của hai tỉ số (hoặc a : b = c : d).
Các số a, b, c, d được gọi là các số hạng của tỉ lệ thức; a và d là các số hạng ngoài hay ngoại tỉ, b và c là các số hạng trong hay trung tỉ.
Chuyên đề: TỈ LỆ THỨC-TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU A. CƠ SỞ LÍ THUYẾT I. TỈ LỆ THỨC 1. Định nghĩa: Tỉ lệ thức là một đẳng thức của hai tỉ số (hoặc a : b = c : d). Các số a, b, c, d được gọi là các số hạng của tỉ lệ thức; a và d là các số hạng ngoài hay ngoại tỉ, b và c là các số hạng trong hay trung tỉ. 2. Tính chất: Tính chất 1: Nếu thì Tính chất 2: Nếu và a, b, c, d thì ta có các tỉ lệ thức sau: , , , Nhận xét: Từ một trong năm đẳng thức trên ta có thể suy ra các đẳng thức còn lại. II. TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU -Tính chất: Từ suy ra: -Tính chất trên còn mở rộng cho dãy tỉ số bằng nhau: suy ra: (giả thiết các tỉ số trên đều có nghĩa). * Chú ý: Khi có dãy tỉ số ta nói các số a, b, c tỉ lệ với các số 2, 3, 5. Ta cũng viết a : b : c = 2 : 3 : 5 B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI DẠNG I: TÌM GIÁ TRỊ CỦA BIẾN TRONG CÁC TỈ LỆ THỨC. Ví dụ 1: Tìm hai số x và y biết và Giải: Cách 1: (Đặt ẩn phụ) Đặt , suy ra: , Theo giả thiết: Do đó: KL: Cách 2: (sử dụng tính chất của dãy tỉ số bằng nhau): Áp dụng tính chất của dãy tỉ số bằng nhau ta có: Do đó: KL: Cách 3: (phương pháp thế) Từ giả thiết mà Do đó: KL: Ví dụ 2: Tìm x, y, z biết: , và Giải: Từ giả thiết: (1) (2) Từ (1) và (2) suy ra: (*) Ta có: Do đó: KL: Cách 2: Sau khi làm đến (*) ta đặt ( sau đó giải như cách 1 của VD1). Cách 3: (phương pháp thế: ta tính x, y theo z) Từ giả thiết: mà Suy ra: , KL: Ví dụ 3: Tìm hai số x, y biết rằng: và Giải: Cách 1: (đặt ẩn phụ) Đặt , suy ra , Theo giả thiết: + Với ta có: + Với ta có: KL: hoặc Cách 2: ( sử dụng tính chất của dãy tỉ số bằng nhau) Hiển nhiên x Nhân cả hai vế của với x ta được: + Với ta có + Với ta có KL: hoặc Cách 3: (phương pháp thế) làm tương tự cách 3 của ví dụ 1. BÀI TẬP VẬN DỤNG: Bài 1: Tìm các số x, y, z biết rằng: a) và b) , và c) và d) và e) và f) Bài 2: Tìm x, y biết rằng: Bài 3: Tìm x, y biết rằng: Bài 4: Cho và Tìm giá trị của: Giải: ( Vì) =>3a = b+c+d; 3b = a+c+d => 3a-3b= b- a => 3(a- b) = -(a-b) =>4(a-b) = 0 =>a=b Tương tự =>a=b=c=d=>A=4 Bài 5: Tìm các số x; y; z biết rằng: a) và 5x – 2y = 87; b) và 2x – y = 34; b) và x2 + y2 + z2 = 14. c) Bài 6; Tìm hai số hữu tỉ a và b biết rằng hiệu của a và b bằng thương của a và b và bằng hai lần tổng của a và b ? Giai. Rút ra được: a = - 3b, từ đó suy ra : a = - 2,25; b = 0,75. Bài 7: Chứng minh rằng nếu có các số a, b, c, d thỏa mãn đẳng thức: thì chúng lập thành một tỉ lệ thức. Giải: => ab(ab-2cd)+c2d2=0 (Vì ab(ab-2)+2(ab+1)=a2b2+1>0 với mọi a,b) =>a2b2-2abcd+ c2d2=0 =>(ab-cd)2=0 =>ab=cd =>đpcm DẠNG II: CHỨNG MINH TỈ LỆ THỨC Để chứng minh tỉ lệ thức: ta thường dùng một số phương pháp sau: Phương pháp 1: Chứng tỏ rằng A. D = B.C Phương pháp 2: Chứng tỏ rằng hai tỉ số và có cùng giá trị. Phương pháp 3: Sử dụng tính chất của tỉ lệ thức. Một số kiến thức cần chú ý: +) +) Sau đây là một số ví dụ minh họa: ( giả thiết các tỉ số đều có nghĩa) Ví dụ 1: Cho tỉ lệ thức .Chứng minh rằng: Giải: Cách 1: (PP1) Ta có: (1) (2) Từ giả thiết: (3) Từ (1), (2), (3) suy ra: (đpcm) Cách 2: (PP2) Đặt , suy ra Ta có: (1) (2) Từ (1) và (2) suy ra: (đpcm) Cách 3: (PP3) Từ giả thiết: Áp dụng tính chất của dãy tỉ số bằng nhau ta có: (đpcm) Hỏi: Đảo lại có đúng không ? Ví dụ 2: Cho tỉ lệ thức . Chứng minh rằng: Giải: Cách 1: Từ giả thiết: (1) Ta có: (2) (3) Từ (1), (2), (3) suy ra: (đpcm) Cách 2: Đặt , suy ra Ta có: (1) (2) Từ (1) và (2) suy ra: (đpcm) Cách 3: Từ giả thiết: (đpcm) BÀI TẬP VẬN DỤNG: Bài 1: Cho tỉ lệ thức: . Chứng minh rằng ta có các tỉ lệ thức sau: (với giả thiết các tỉ số đều có nghĩa). 1) 2) 3) 4) 5) 6) 7) 8) Bài 2: Cho . Chứng minh rằng: Bài 3: Cho Chứng minh rằng: Bài 4: Cho và Chứng minh rằng: Bài 5: Cho . CMR: Bài 6: Cho tỉ lệ thức : . Chứng minh rằng: . Giải. Ta có : =; Bài 7: Cho a, b, c, d là 4 số khác 0 thỏa mãn: và Chứng minh rằng: Chuyên đề: GIÁ TRỊ TUYỆT ĐỐI A> MỤC TIÊU Thông qua việc giải toán sẽ phát triển được tư duy độc lập, sáng tạo của học sinh, rèn ý chí vượt qua mọi khó khăn. B> THỜI LƯỢNG Tổng số :(6 tiết) 1) Kiến thức cần nhớ:(1 tiết) 2)Các dạng bài tập và phương pháp giải(5 tiết) 1. Lý thuyết *Định nghĩa: Khoảng cách từ điểm a đến điểm 0 trên trục số là giá trị tuyệt đối của một số a( a là số thực) * Giá trị tuyệt đối của số không âm là chính nó, giá trị tuyệt đối của số âm là số đối của nó. TQ: Nếu Nếu Nếu x-a ³ 0=> = x-a Nếu x-a £ 0=> = a-x *Tính chất Giá trị tuyệt đối của mọi số đều không âm TQ: với mọi a Î R Cụ thể: =0 a=0 ≠ 0 a ≠ 0 * Hai số bằng nhau hoặc đối nhau thì có giá trị tuyệt đối bằng nhau, và ngược lại hai số có giá trị tuyệt đối bằng nhau thì chúng là hai số bằng nhau hoặc đối nhau. TQ: * Mọi số đều lớn hơn hoặc bằng đối của giá trị tuyệt đối của nó và đồng thời nhỏ hơn hoặc bằng giá trị tuyệt đối của nó. TQ: và * Trong hai số âm số nào nhỏ hơn thì có giá trị tuyệt đối lớn hơn TQ: Nếu * Trong hai số dương số nào nhỏ hơn thì có giá trị tuyệt đối nhỏ hơn TQ: Nếu * Giá trị tuyệt đối của một tích bằng tích các giá trị tuyệt đối. TQ: * Giá trị tuyệt đối của một thương bằng thương hai giá trị tuyệt đối. TQ: * Bình phương của giá trị tuyệt đối của một số bằng bình phương số đó. TQ: * Tổng hai giá trị tuyệt đối của hai số luôn lớn hơn hoặc bằng giá trị tuyệt đối của hai số, dấu bằng xảy ra khi và chỉ khi hai số cùng dấu. TQ: và 2. Các dạng toán : I. Tìm giá trị của x thoả mãn đẳng thức có chứa dấu giá trị tuyệt đối: 1. Dạng 1: ( Trong đó A(x) là biểu thức chứa x, k là một số cho trước ) * Cách giải: - Nếu k < 0 thì không có giá trị nào của x thoả mãn đẳng thức( Vì giá trị tuyệt đối của mọi số đều không âm ) - Nếu k = 0 thì ta có - Nếu k > 0 thì ta có: Bài 1.1: Tìm x, biết: a) b) c) d) Giải a) = 4 x= ± 4 a) 2x-5 = ± 4 * 2x-5 = 4 2x = 9 x = 4,5 * 2x-5 = - 4 2x =5-4 2x =1 x =0,5 Tóm lại: x = 4,5; x =0,5 b) Bài 1.2: Tìm x, biết: a) b) c) Bài 1.3: Tìm x, biết: a) b) c) d) 2. Dạng 2: ( Trong đó A(x) và B(x) là hai biểu thức chứa x ) * Cách giải: Vận dụng tính chất: ta có: Bài 2.1: Tìm x, biết: a) b) c) d) a) * 5x-4=x+2 5x- x =2+4 4x=6 x= 1,5 * 5x-4=-x-2 5x + x =- 2+ 4 6x= 2 x= 3 Vậy x= 1,5; x= 3 Bài 2.2: Tìm x, biết: a) b) c) d) 3. Dạng 3: ( Trong đó A(x) và B(x) là hai biểu thức chứa x ) * Cách 1: Ta thấy nếu B(x) < 0 thì không có giá trị nào của x thoả mãn vì giá trị tuyệt đối của mọi số đều không âm. Do vậy ta giải như sau: (1) Điều kiện: B(x) (*) (1) Trở thành ( Đối chiếu giá tri x tìm được với điều kiện ( * ) * Cách 2: Chia khoảng xét điều kiện bỏ dấu giá trị tuyệt đối: Nếu Nếu Ta giải như sau: (1) Nếu A(x) thì (1) trở thành: A(x) = B(x) ( Đối chiếu giá trị x tìm được với điều kiện ) Nếu A (x ) < 0 thì (1) trở thành: - A(x) = B(x) ( Đối chiếu giá trị x tìm được với điều kiện ) Bài 3.1: Tìm x, biết: a) b) c) d) Bài 3.2: Tìm x, biết: a) b) c) d) Bài 3.3: Tìm x, biết: a) b) c) d) 4. Dạng 4: Đẳng thức chứa nhiều dấu giá trị tuyệt đối: * Cách giải: Lập bảng xét điều kiện bỏ dấu giá trị tuyệt đối: Căn cứ bảng trên xét từng khoảng giải bài toán ( Đối chiếu điều kiện tương ứng ) Ví dụ1 : Tìm x biết rằng (1) v Nhận xét: Như trên chúng ta đã biến đổi được biểu thức chứa dấu giá trị tuyệt đối thành các biểu thức không chứa dấu giá trị tuyệt đối. Vậy ta sẽ biến đổi biểu thức ở vế trái của đẳng thức trên. Từ đó sẽ tìm được x Giải Xét x – 1 = 0 x = 1; x – 1 0 x > 1 x- 3 = 0 x = 3; x – 3 0 x > 3 Ta có bảng xét dấu các đa thức x- 1 và x- 3 dưới đây: x 1 3 x – 1 - 0 + + x – 3 - - 0 + Xét khoảng x < 1 ta có: (1) (1 – x ) + ( 3 – x ) = 2x – 1 -2x + 4 = 2x – 1 x = (giá trị này không thuộc khoảng đang xét) Xét khoảng 1 x 3 ta có: (1) (x – 1 ) + ( 3 – x ) = 2x – 1 2 = 2x – 1 x = ( giá trị này thuộc khoảng đang xét) Xét khoảng x > 3 ta có: (1) (x – 1 ) + (x – 3 ) = 2x – 1 - 4 = -1 ( Vô lí) Kết luận: Vậy x = . VD2 : Tìm x + =0 Nhận xét x+1=0 => x=-1 x-1=0 => x=1 Ta lập bảng xét dấu x -1 1 x+1 - 0 + + x-1 - - 0 + Căn cứ vào bảng xét dấu ta có ba trường hợp Nếu x<-1 Nếu -1 £ x £ 1 Nếu x >1 Bài 4: Tìm x, biết: a) b) c) d) 5. Dạng 5: Xét điều kiện bỏ dấu giá trị tuyệt đối hàng loạt: (1) Điều kiện: D(x) kéo theo Do vậy (1) trở thành: A(x) + B(x) + C(x) = D(x) Bài 5: Tìm x, biết: a) b) Bài 5.2: Tìm x, biết: a) b) 6. Dạng 6: Dạng hỗn hợp: Bài 6: Tìm x, biết: a) b) c) 7. Dạng 7: Vận dụng tính chất không âm của giá trị tuyệt đối dẫn đến phương pháp bất đẳng thức. * Nhận xét: Tổng của các số không âm là một số không âm và tổng đó bằng 0 khi và chỉ khi các số hạng của tổng đồng thời bằng 0. * Cách giải chung: B1: đánh giá: B2: Khẳng định: Bài 7: Tìm x, y thoả mãn: a) b) c) d) * Chú ý1: Bài toán có thể cho dưới dạng nhưng kết quả không thay đổi * Cách giải: (1) (2) Từ (1) và (2) Bài 7.2: Tìm x, y thoả mãn: a) b) c) a) b) c) * Chú ý 2: Do tính chất không âm của giá trị tuyệt đối tương tự như tính chất không âm của luỹ thừa bậc chẵn nên có thể kết hợp hai kiến thức ta cũng có các bài tương tự. Bài 7.3: Tìm x, y thoả mãn đẳng thức: a) b) c) d) Bài 7.4: Tìm x, y thoả mãn : a) b) c) d) 8. Dạng 8: * Cách giải: Sử dụng tính chất: Từ đó ta có: Bài 8: Tìm x, biết: a) b) c) d) e) f) 1 - Lập bảng xét dấu để bỏ dấu giá tri tuyệt đối Bài 1: Tìm x, biết: a) Ta lập bảng xét dấu x -3 3 x+3 - 0 + + 2x-6 - - 0 + Căn cứ vào bảng xét dấu ta có ba trường hợp * Nếu x<-3 Khi đó phương trình trở thành 6 - 2x - x - 3 = 8 -3x = 8 - 3 -3x = 5 x = - 5/3 ( không thỏa mãn x<-3) * Nếu - 3 £ x £ 3 6 - 2x + x + 3 = 8 - x = -1 x = 1 ( thỏa mãn - 3 £ x £ 3) * Nếu x >3 2x-6 + x + 3 = 8 3 x = 11 x = 11/3 ( thỏa mãn x >3) 2- Sử dụng phương pháp bất đẳng thức: Bài 1: Tìm x, y thoả mãn đẳng thức: a) x-y-2 =0 x=-1 y+3 =0 y= -3 Bài 2: Tìm x, y thoả mãn : a) Bài 3: Tìm x, y thoả mãn: a) Bài 4: Tìm x thoả mãn: a) II – Tìm cặp giá trị ( x; y ) nguyên thoả mãn đẳng thức chứa dấu giá trị tuyệt đối: 1. Dạng 1: với * Cách giải: * Nếu m = 0 thì ta có * Nếu m > 0 ta giải như sau: (1) Do nên từ (1) ta có: từ đó tìm giá trị của và tương ứng . Bài 1: Tìm cặp số nguyên ( x, y) thoả mãn: a) b) c) 2. Dạng 2: với m > 0. * Cách giải: Đánh giá (1) (2) Từ ... ;AB=8k và AC=15k Ta có Vậy AB= 8.3= 24 m và AC=15.3= 45 m BÀI 4: Cho tam giác ABC vuông tại A. Đường cao AH,trên đó lấy điểm D. Trên tia đối HA lấy E sao cho HE=AD. Đường vuông góc AH tại D cắt AC tại F . Chứng minh EB vuông góc E F ? HD: A D F B H C E Vì AD=HE=>AH=DE Áp dụng Định lý Py ta go vao tam giác vuông ABF;ABH;ADF;BHE;DE F ta được: Vậy theo định lý đảo Py ta go=> tam giác BE F vuông tại E=> EB vuông góc E F CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG BÀI 1: Cho tam giác ABC. Trung tuyến AM cũng là phân giác . a/ Chứng minh tam giác ABC cân. b/ Cho AB=37; AM =35 . Tính BC ? HD: (H.1) A A F D H K (H.1) B M C (H.2) B E C a/ Vẽ thêm MH vuông góc AB & MK vuông góc AC. Chứng minh b/ Tam giác ABC cân =>AH vuông gócBC =>BM= BÀI 2: Cho tam giác có ba đường cao bằng nhau. a/ Chứng minh tam giác đó đều ? b/ Cho biết mỗi đường cao có độ dài . Tính độ dài mỗi cạnh tam giác đó? HD.(H.2) Tam giác ABC có ba đường cao bằng nhau là: AD=BE=C F. a/ Ta chứng minh b/ Gọi độ dài mỗi cạnh là x.Xét tam giac ADC vuông tại D có Bài 23: Cho tam giác cân ABC (AB=AC. Kẻ đường vuông góc AB tại B và vuông góc AC tại C. hai đường nầy cắt nhau tại D. a/ Chứng minh AD là phân giác góc A ? b/ So sánh AD & CD ? HD: (H1) A A ( Hình 2) 1 2 D E B C B M N C D (xem h.1) a/ Chứng minh tam giác ABD=tam giác ACD(Ch+cgv)=> Suy ra AD phân giác góc  b/ Suy ra AD=CD ( 2 cạnh tương ứng) BIỂU THỨC ĐẠI SỐ – GIÁ TRỊ CỦA BIỂU THỨC ĐẠI SỐ Bài 1:Tính giá trị của biểu thức : A = x2 + 4xy – 3y3 với Bài 2: Cho x – y = 9, tính giá trị của biểu thức : B = ( x - 3y ; y - 3x) Bài 3: Tính giá trị của các biểu thức sau : a) A = với x = 4 và y = 8 b) B = 2m2 – 3m + 5 với = 1 c) C = 2a2 – 3ab + b2 với và = 2 Bài 4: Xác định các giá trị của biến để biểu thức sau có nghĩa : a) b) c) Bài 5: Tính giá trị của biểu thức : N= với = Bài 6 : Tìm các giá trị của biến để : a)A= (x + 1)(y2 – 6) có giá trị bằng 0 b) B = x2 – 12x + 7 có giá trị bằng 7 Bài 7 : Tính giá trị của biểu thức sau : A = với Bài 8: Cho x, y, z 0 và x – y – z = 0 .Tính giá trị của biểu thức B = Bài 9: a) Tìm GTNN của biểu thức C = ( x+ 2)2 + ( y - 2 – 10 b) Tìm GTLN của biểu thức sau : D = Bài 10: Cho biểu thức E = .Tìm các giá trị nguyên của x để : a) E có giá trị nguyên b) E có giá trị nhỏ nhất Bài 11: Tìm các GTNN của các biểu thức sau : a) (x – 3)2+ 2 b) (2x + 1)4 – 1 c) (x2 – 16)2 + - 2 Bài 12: Tìm GTNN của biểu thức :A = Bài 13: Tìm các giá trị nguyên của x ,để biểu thức sau nhận giá trị nguyên : A = Bài 14: Cho f(x) = ax + b trong đó a, b Z Chứng minh rằng không thể đồng thời có f(17) = 71 và f(12) = 35 Bài 15 Cho f(x) = ax2 + bx + c .Chứng minh rằng không có những số nguyên a, b, c nào làm cho f(x) = 1 khi x = 1998 và f(x) = 2 khi x = 2000 Bài 16: Chứng minh rằng biểu thức P = x8 – x5 + x2 – x + 1 luôn nhận giá trị dương với mọi giá trị của x. Bài 17: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức : B = với x Bài 18: Chứng minh các đẳng thức sau : a) x2 – y2 = (x+ y) (x- y) b) x3 + y3 = (x+ y) ( x2 – xy + y2) c) a(a – b) – b(b- a) = a2 – b2 d) a( b- c) – b(a + c) + c( a – b) = - 2bc e) a( 1- b) + a( a2 – 1) = a (a2- b) f) a(b – x) + x(a + b) = b( a + x) Bài 20: Rút gọcn biểu thức đại số sau : a) A = ( 15x + 2y) - b) B = - (12x + 3y) + (5x – 2y) - Bài 21: Đặt thừa số chung để viết các tổng sau đây thành tích : a) ab + bd – ac – cd b) ax + by – ay – bx c) x2 – xy – xy + y2 d) x2+ 5x + 6 Bài 22: Chứng tỏ rằng : a) Biểu thức x2 + x + 3 luôn luôn có giá trị dương với mọi giá trị của x . b) Biểu thức – 2x2 + 3x – 8 không nhận giá trị dương với mọi giá trị của x. Bài 23*: Tìm x, y là các số hữu tỷ biết rằng: a) b) c) d) (x-2) + y- 2= 0 (nN) Bài 24: Tìm x, y là các số nguyên biết: a) b*) ĐƠN THỨC, ĐƠN THỨC ĐỒNG DẠNG Bài tập cơ bản Bài 1: Cộng và trừ các đơn thức : a)3a2 b+ (- a2b) + 2a2b – (- 6a2b) b)(-7y2) + (-y2) – (- 8y2) c)(-4,2p2) + ( - 0,3p2) + 0,5p2 + 3p2 d) 5an + (- 2a)n + 6an Bài 2: Thực hiện các phép tính sau : a) b) 3ab.ac – 2a.abc - a2bc c) .c2 - a2.(c.c)2 + ac2.ac - a2c2 Bài 3: Cho các đơn thức A = x2y và B = xy2 .Chứng tỏ rằng nếu x,y Z và x + y chia hết cho 13 thì A + B chia hết cho 13 Bài 4: Cho biểu thức : P = 2a2n+1 – 3a2n + 5a2n+1 – 7a2n + 3a2n+1+ ( n N) Với giá trị nào của a thì P > 0 Bài 5: Cho biểu thức: Q = 5xk+2 + 3xk + 2xk+2 + 4xk + xk+2 + xk ( k N) Với giá trị nào của x và k thì Q < 0 Bài 6: Tìm x biết : xn – 2xn+1 + 5xn – 4xn+1 = 0 ( n N; n 0) Bài 7: Biết A = x2yz , B = xy2z ; C = xyz2 và x+ x + z = 1 Chứng tỏ rằng A + B + C = xyz Bài 8: Tìm các đơn thức đồng dạng với nhau trong các đơn thức sau: Bài 9: Tính tổng : a) b) Bài10: Rút gọn các biểu thức sau : a) 10n+1- 66.10n b) 2n+ 3 + 2n +2 – 2n + 1 + 2n c)90.10k – 10k+2 + 10k+1 d) 2,5.5n – 3 .10 + 5n – 6.5n- 1 Nâng cao Bài 1: Cho biểu thức M = 3a2x2 + 4b2x2- 2a2x2 – 3b2x2 + 19 ( a 0; b 0) Tìm GTNN của M Bài 2 : Cho A = 8x5y3 ; B = - 2x6y3 ; C = - 6x7y3 .Chứng tỏ rằng : Ax2 + Bx + C = 0 Bài 3: Chứngminh rằng với n N* a) 8.2n + 2n+1 có tận cùng bằng chữ số không b) 3n+3 – 2.3n + 2n+5 – 7.2n chia hết cho 25 c)4n+3 + 4n+2 – 4n+1 – 4n chia hết cho 300 Bài 4: Cho A = ( - 3x5y3)4 và B = ( 2x2z4)5 .Tìm x,y,z biết A + B = 0 Bài 5: Rút gọn: a) M + N – P với M = 2a2 – 3a + 1 , N = 5a2 + a , P = a2 – 4 b) 2y – x - với x =a2 + 2ab + b2 , y = a2 – 2ab + b2 c) 5x – 3 - Bài 6: Tìm x,biết : a) (0,4x – 2) – (1,5x + 1) – ( - 4x – 0,8) = 3,6 b) ( ) – - = - Bài 7: Tìm số tự nhiên ( a > b > c) sao cho : = 666 Bài 8: Có số tự nhiên nào mà tổng là một số chính phương không ? Bài 9 : Tính tổng : (- 5x2y + 3xy2 + 7) + ( - 6x2y + 4xy2 – 5) (2,4x3 -10x2y) + (7x2y – 2,4x3+3xy2) (15x2y – 7xy2-6y2) + (2x2- 12x2y + 7xy2) (4x2+x2y -5y3)+()+()+ () Bài 10: Rút gọn biểu thức sau a/ (3x +y -z) – (4x -2y + 6z) d)K= 2x.(-3x + 5) + 3x(2x – 12) + 26x e) Bài 11: Tìm x biết: a) x +2x+3x+4x+..+ 100x = -213 b) c) 3(x-2)+ 2(x-1)=10 d) e) g) h) + =3 k) (2x-1)2 – 5 =20 m) ( x+2)2 = n) ( x-1)3 = (x-1) q*) (x-1)x+2 = (x-1)2 r*) (x+3)y+1 = (2x-1)y+1 với y là một số tự nhiên Chủ đề: SỐ CHÍNH PHƯƠNG MỘT SỐ DẠNG BÀI TẬP VỀ SỐ CHÍNH PHƯƠNG. LÝ THUYẾT: 1.Định nghĩa: Số chính phương là một số bằng bình phương của một số tự nhiên Ví dụ: Các số 9; 225 là bình phương của các số tự nhiên : 3; 15 được gọi là số chính phương 2. Một số tính chất: a) Số chính phương chỉ có thể tận cùng là : 0; 1; 4; 5; 6; 9 không thể tận cùng bởi 2; 3; 7; 8. b)Một số chính phương có chữ số tận cùng là 5 thì chữ số hàng chục là 2. Thật vậy ,giả sử = Vì chữ số hàng chục của và 100a là số 0 nên chữ số hàng chục của số M là 2 c)Một số chính phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nó là số lẻ. Thật vậy, giả sử số chính phương N=a2 có chữ số tận cùng là 6 thì chữ số hàng đơn vị của số a chỉ có thể là 4 hoặc 6. Giả sử hai chữ số tận cùng của số a là b4 (nếu là b6 thì chứng minh tương tự ), Khi đó b42 = (10b+4)2 = 100b2 + 80b + 16. Vì chữ số hàng chục của số 100b2 và 80b là số chẵn nên chữ số hàng chục của N là số lẻ. d) Khi phân tích ra thừa số nguyên tố ,số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn ,không chứa thừa số nguyên tố với số mũ lẻ . Thật vậy ,giả sử A = m2 =ax .by.cz trong đó a,b,c ,là các số nguyên tố khác nhau,còn x,y,zlà các số nguyên tố dương thế thì , A = m2 = (ax by cz)2 = a2x.b2y.c2z Từ tính chất này suy ra: -Số chính phương chia hết cho 2 thì chia hết cho 4. -Số chính phương chia hết cho 3 thì chia hết cho 9. -Số chính phương chia hết cho 5 thì chia hết cho 25. -Số chính phương chia hết cho 8 thì chia hết cho 16. 3/ Nhận biết một số chính phương: 4/ Hằng đẳng thức vận dụng: (a b)2 = a2 2ab + b2 và a2 – b2 = (a + b)(a – b) 5. Các bài tập: Bài 1. Chứng minh rằng : a) Một số chính phương không thể viết được dưới dạng 4n+2 họăc 4n +3 (nÎN); b)Một số chính phương không thể viết dưới dạng 3n+2(nÎN). Giải Một số tự nhiên chẵn có dạng 2k (kÎN), khi đó (2k)2 = 4k2 là số chia hết cho 4 còn số tự nhiên lẻ có dạng 2k+1 (kÎN) , Khi đó (2k+1)2 = 4k2+ 4k +1 là số chia cho 4 dư 1. Như vậy một số chính phương hoặc chia hết cho 4 hoặc chia cho 4 dư 1 , do đó không thể viết đựơc dưới dạng 4n+2 hoặc 4n+3(nÎN) Một số tự nhiên chỉ có thể viết dưới dạng 3k hoặc 3k1 (kÎ N) khi đó bình phương của nó có dạng(3k)2 =9k2 là số chia hết cho 3 ,hoặc có dạng (3k1)2= 9k26k +1 là số khi chia cho 3 thì dư 1.Như vậy một số chính phương không thể viết dưới dạng 3n+2(nÎN). Bài 2: Cho 5 số chính phương bất kỳ có chữ số hàng chục khác nhau còn chữ số hàng đơn vị đều là 6. Chứng minh rằng tổng các chữ số hàng chục của 5 số chính phương đó là một số chính phương. Giải Cách 1 . Ta biết rằng 1 số chính phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nó là số lẻ .Vì vậy chữ số hàng chục của 5 số chính phương đã cho là: 1, 3, 5, 7 ,9 khi đó tổng của chúng bằng :1+3+5+7+9=25 =52 là số chính phương. Cách 2. Nếu một số chính phương có M=a2 có chữ số hàng đơn vị là 6 thì chữ số tận cùng của số a là số chẵn, do đó a2 nên a2 4. Theo dấu hiệu chia hết cho 4 thì 2 chữ số tận cùng của số Mchỉ có thể là 16,36,56,76,96.Từ đó ,ta có : 1+3+5+7+9=25=52là số chính phương Bài 3: Tìm số tự nhiên n có 2 chữ số, biết rằng 2 số 2n+1 và 3n+1 đồng thời là 2 số chính phương Giải n là số tự nhiên có 2 chữ số nên 10 ≤ n < 100, do đó 21 ≤ 2n+1 < 201 Mặt khác 2n+1 là số chính phương lẻ nên 2n+1 chỉ có thể nhận một trong các giá trị :25; 49; 81; 121; 169. Từ đó n chỉ có thể nhận một trong các giá trị 12, 24, 40, 60,84. Khi đó số 3n+1 chỉ có thể nhận một trong các giá trị : 37; 73; 121; 181; 253. Trong các số trên chỉ có số 121=112 là một số chính phương. Vậy số tự nhiên có 2 chữ số cần tìm là n=40. Bài 4: Chứng minh rằng nếu p là tích của n số nguyên tố đầu tiên thì p-1 và p+1 không thể là các số chính phương Giải Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 (1) Giả sử p+1 là số chính phương . Đặt p+1 = m2 (mÎN) Vì p là số chẵn nên p+1 là số lẻ , do đó m2 là số lẻ ,vì thế m là số lẻ . Đặt m=2k+1 (kÎN) Ta có m2 = (2k+1)2 = 4k2+ 4k+ 1 , suy ra p+1= 4k2+ 4k+ 1 do đó p=4k(k+1) là số chia hết cho 4, mâu thuẫn với (1) Vậy p+1 không là số chính phương b)Ta có p = 2.3.5là số chia hết cho 3. Do đó p-1 = 3k+2 không là số chính phương.Vậy nếu p là tích của n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương
Tài liệu đính kèm: