Chuẩn kiến thức kỹ năng môn Toán học thcs

Chuẩn kiến thức kỹ năng môn Toán học thcs

CHUẨN KIẾN THỨC KỸ NĂNG MÔN TOAN THCS

I. Giới thiệu chung về chuẩn

1. Chuẩn là những yêu cầu, tiêu chí (gọi chung là yêu cầu) tuân thủ những nguyên tắc nhất định, được dùng để làm thước đo đánh giá hoạt động. công việc, sản phẩm của lĩnh vực nào đó. Đạt được những yêu cầu của chuẩn là đạt được mục tiêu mong muốn của chủ thể quản lý hoạt động, công việc, sản phẩm đó.

Yêu cầu là sự cụ thể hóa, chi tiết, tường minh Chuẩn, chỉ ra những căn cứ để đánh giá chất lượng. Yêu cầu có thể được đo thông qua chỉ số thực hiện. Yêu cầu được xem như những “ chốt kiểm soát” để đánh giá chất lượng đầu vào, đầu ra cũng như qúa trình thực hiện.

 

doc 40 trang Người đăng vultt Lượt xem 532Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Chuẩn kiến thức kỹ năng môn Toán học thcs", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CHUẨN KIẾN THỨC KỸ NĂNG MÔN TOAN THCS
Giới thiệu chung về chuẩn
Chuẩn là những yêu cầu, tiêu chí (gọi chung là yêu cầu) tuân thủ những nguyên tắc nhất định, được dùng để làm thước đo đánh giá hoạt động. công việc, sản phẩm của lĩnh vực nào đó. Đạt được những yêu cầu của chuẩn là đạt được mục tiêu mong muốn của chủ thể quản lý hoạt động, công việc, sản phẩm đó.
Yêu cầu là sự cụ thể hóa, chi tiết, tường minh Chuẩn, chỉ ra những căn cứ để đánh giá chất lượng. Yêu cầu có thể được đo thông qua chỉ số thực hiện. Yêu cầu được xem như những “ chốt kiểm soát” để đánh giá chất lượng đầu vào, đầu ra cũng như qúa trình thực hiện.
Những yêu cầu cơ bản của chuẩn
Chuẩn phải có tính khách quan, nhìn chung không lệ thưộc vào quan điểm hay thái độ chủ quan của người sử dụng Chuẩn.
Chuẩn phải có hiệu lực ổn định cả về phạm vi lẫn thời gian áp dụng.
Đảm bảo tính khả thi, có nghĩa là chuẩn đó có thể đạt được ( là trình độ hay mức độ dung hòa hợp lý giữa yêu cầu phát triển ở mức cao hơn với những thực tiễn đang diễn ra.
Đảm bảo tính cụ thể, tường minh và có chức năng định lượng.
Đảm bảo không mâu thuẫn với các chuẩn khác trong cùng lĩnh vực hoặc những lĩnh vực có liên quan.
Chuẩn kiến thức kỹ năng của chương trình giáo dục phổ thông
Chuẩn kiến thức kỹ năng của chương trình giáo dục phổ thông được thể hiện cụ thể trong các chương trình môn học, hoạt động giáo dục (gọi chung là môn học) và các chương trình cấp học.
Đối với mỗi môn học, mỗi cấp học, mục tiêu của môn học, cấp học đươcj cụ thể hóa thành chuẩn kiến thức, kỹ năng của chương trình môn học, chương trình cấp học.
Chuẩn kiến thức, kỹ năng của chương trình môn học là các yêu cầu cơ bản, tối thiểu về kiến thức, kỹ năng của môn học mà học sinh cần phải và có thể đạt được sau mỗi đơn vị kiến thức (mỗi bài, chủ đè, chủ điểm, môđun)
Chuẩn kiến thức, kỹ năng của một đơn vị kiến thức là các yêu cầu cơ bản, tối thiểu về kiến thức, kỹ năng của đơn vị kiến thức mà học sinh cần phải và có thể đạt được.
Yêu cầu về kiến thức, kỹ năng thể hiện mức độ cần đạt về kiến thức, kỹ năng.
Mỗi yêu cầu vè kiến thức kỹ năng có thể được chi tiết hơn bằng những yêu cầu về kiến thức kỹ năng cụ thể, tường minh hơn; minh chứng bằng những ví dụ thể hiện được cả nội dung kiến thức, kỹ năng và mức độ cần đạt về kiến thức, kỹ năng.
Chuẩn kiến thức kỹ năng của chương trình cấp học là các yêu cầu cơ bản, tối thiểu cần đạt về kiến thức, kỹ năng của các môn học mà học sinh cần phải và có thể đạt đựoc sau từng giai đoạn học tập trong cấp học.
2.1 Chuẩn kiến thức, kỹ năng ở chương trình các cấp học đề cập tới những yêu cầu tốa thiểu về kiến thức, kỹ năng mà học sinh cần và có thể đạt được sau khi hoàn thành chương trình giáo dục của từng lớp và từng cấp học. Các chuẩn này cho thấy ý nghĩa quan trọng của việc gắn kết, phối hợp giữa các môn học nhằm đạt đựoc mục tiêu giáo dục của cấp học.
2.2 Việc thể hiện Chuẩn kiến thức kỹ năng ở cuối chương trình cấp học thể hiện hình mẫu mong đợi về người học sau mỗi cấp học và cần thiết cho công tác quản lý chỉ đạo đào tạo, bòi dưỡng giáo viên.
2.3 Chương trình cấp học đã thể hiện chuẩn không phải đối với từng môn học mà đối với từng lĩnh vực học tập.
a) chuẩn không đựoc đưa vào cho từng môn riêng biệt mà cho từng lĩnh vực học tập
b) Chuẩn yêu cầu về thái độ được thể hiện trong ct cấp học là các chuẩn của cấp cáp học, tức là yc cụ thể mà hs cần đạt được ở cuối cấp học.
3. Những đặc điểm của chuẩn kiến thức kỹ năng
3.1 CKTKN đựoc chi tiết , tường minh bằng các yc cụ thể, rõ ràng về KT,KN
3.2 CKTKN có tính tối thiểu nhằm đảm bảo mọi HS cần phải và có thể đạt đươcj những yc cụ thể này
3.3 CKTKN là thàh phần của CTGDPT
III. Các mức độ về kiến thức kỹ năng
Về kiến thức: YC HS phải nhớ, nắm vững, hiểu rõ các kiến thức cơ bản trong chương trình, Sgk đó là nền tảng vững chắc để có thể pt năng lực nhận thức ở cấp cao hơn
Về kỹ năng: biết vận dụng các kkiến thức đãhọc để trả lời câu hỏi, giải bài tập. làm thực hành; có kỹ năng tính toán, vẽ hình, dựng biểu đồ
Kiến thức, kỹ năng phải dựa trên cơ sở phát triển năng lực, trí tuệ HS ở các mức độ từ đơn giản tới phức tạp
Mức độ cần đạt đựoc về kiến thức đựoc xác định theo 6 mức độ: nhận biết, thông hiểu, vận dụng, phân tích, đánh giá và sáng tạo
Nhận biết: là sự nhớ lại các dữ liệu, thông tin đã có trước đay; nghĩa là có thể nhận biết thông tin, ghi nhớ, taói hiện thông tin, nhắc lại một loại dữ liệu, từ các sự kiện đơn giản đến các lý thuyết lphức tạp.
Thông hiểu: Là khả năng nắm đưựoc hiểu đựợc ý nghĩa của các khái niệm, sự vật hiện tượng; là mức độ cao hơn nhận biét nhưng là mức độ thấp nhất của việc thấu hiểu sự vật hiện tượg, được thể hiện bằng việc chuyển thông tin từ dạng này sang dạng khác, bằng cách giải thích thông tin
Vận dụng: là khả năng sử dụng các kiến thức đã học vào một hoàn cảnh cụ thể mới: vận dụng nhận biết, h iểu biét thông tin để giải quyết vấn đề đặt ra.
Phân tích: Là khẳ năng phân chia một thông tin ra thành các phàn thông tin nhỏ sao cho có thể hiểu được cấu trúc, tổ chức của nó và thiét lập mối liên hệ phụ thuộc lẫn nhau giữa chúng.
Đánh gía: Là khả năng xác định giá trị của thông tin: bình xét. Nhận định, xác đinh được giá trị của một tư tưởng, một nội dung kiến thức, một phưương pháp. Đây là mọt bước mới trong việc lĩnh hội kiến thức được đặc trưng bởi việcđi sâu vào bản chất của đối tượng, sự vật, hiện tượng.
Sáng tạo: Là khả năng tổng hợp. sáp xếp . thiết kế lại thông tin; khai thác, bổ sung thông tin từ các nguồn tư liệu khác để sáng l ập một hình mẫu mới.
IV- Chuẩn KTKN của chương trình GDPT vùa là căn cứ vừa là mục tiêu của giảng dạy học tập kiểm tra đánh giá
Chuẩn KTKN là căn cứ
Biên sọan SGK và các tài liệu hướng dẫn dạy học, kiểm tra, đánh giá, đổi mới ppdh, đổi mới kt, dánh gia.
Chỉ đạo, quản lý, thanh tra, kiểm tra việc thực hiện dạy học, kiểm tra đánh giá, sinh hoạt chuyên môn, đào tạo bồi dưỡng cán bộ quản llý và gv
Xác định mục tiêu của mỗi giờ học, mục tiêu của quá trình dạy học, đảm bảo chất lượng giáo dục
Xác định mục tiêu kiểm tra, đánh giá đói với từng bài kt, bài thi; đánh giá kết quả giáo dục từng môn học. lớp học, cấp học
Tài liệu hướng dẫn thực hiện chuẩn KTKN được biến soạn theo hứong dẫn chi tiết các yêu cầu cơ bản. tối thiểu về kiến thức. kỹ năng của chuẩn ktkn bằng các nội dung chọn lọc trong sgk
Yêu cầu dạy học bám sát chuẩn KTKN
3.1. Y/c chung
a) Chuẩn ktkn để xác định mục tiêu bài học. Chú trọng dạy học nhằm đạt đựoc các yc cơ bản và tối thiểu về ktkn đảm bảo không qúa tải và không quắ lệ thuộc hoàn toàn vào sgk; mức độ khai thác sâu kt sgk phải phù hợp khả năng tiếp thu của HS
b) Sáng tạo về ppdh phát huy tính chủ động. tích cực tự giác học tập của HS. Chũ trọgn rèn luyện phương pháp tư duy, năng lực tự học, tự nghiên cứu. tạo niềm vui. Hứnh khởi, nhu cầu hành động và thái độ tự tin trong học tập cho HS
c) Dạy học thể hiẹn mối quan hệ tích cực giữa GV và HS, giữa HS với HS, tiến hành thông qua việc tổ chức học tập của hs, kết hợp học tập cá thể với học tập hợp tác. Làm việc theo nhóm
d) Dạy học trú trọng đến việc rèn luyện kỹ năng, năng lực hành động, vận dụng kiến thức, tăng cường thực hành và gắn nội dung bài học với thực tiễn.
e) Dạy học chú trọng đến sử dụng có hiêu quả phương tiện. thiết bị dạy học được trang bị hoặc do GV và HS tự làm; quan tâm ứng dụng cntt trong dạy học
g) Dạy học chú trọng đến động viên, khuyến khích kịp thời sự tiến bộ của HS trong quá trình học tập; đan dạng nội dung, các hình thức, cáh thức đánh giá
3.2. Y/c đối với cán bộ quản lý gd
3.3 Y/c đối với giáo viên:
a) Bám sát chuẩn KTKN để thiết kế bài giảng, với mục đích là đạt được các yêu cầu cơ bản,tối thiểu về kiến thức. kỹ năng, dạy không quá tải và không quá lệ thuộc hoàn toàn vào sgk. Việc khai thác sâu kiến thức, kỹ năng phải phù hợp khả năng nhận thức của HS
b) Thiết kế, tổ chức, hướng dẫn hs thực hiện các hoạt động học tập với các hình thức đa dạng , phong phú, có sức hấp dẫn phù hợp với đặc trựng bài học. với đặc điểm và trình độ HS, với điều kiện cụ thể của lớp, của trường và địa phương.
c) Động viên , khuyến khich, tạo cơ hội và điều kiện cho HS được tham gia một cách tích cực, chủ dộng, sáng tạo vào quá trình khám phá, phát hiện, đề xuất và lĩnh hội kiến thức; chú ý khai thác vốn kiến thức, kinh nghiệm, kỹ năng đã có của HS; tạo niềm vui, hứng khởi. nhu cầu hành động và thái độ tự tin trong học tập của HS; giúp HS phát triển tối đa năng lực, tiềm năng của bản thân
d) Thiết kế và hướng dẫn hs thực hiện các dạng câu hỏi, bài tập phát triển tư duy và rèn luyện kỹ năng; hướng dẫn sử dụngcác thiết bị dạy học; tổ chức có hiệu quả các giờ thực hành. Hướng dẫn hs có thới quen vận dụng kiến thức đã học vào giải quyết vấn đề thực tiễn
e) Sử dụng các phương pháp và hình thức tổ chức dạy học một cách hợp lý, hiẹu quả, linh hoạt, phù hợp với đặc trưng của cấp học, môn học; nội dung, tính chất của bài học. đặc điểm và trình độ học sinh; thời lượng dạy học và các điều kiện dạy học cụ thể của trường địa phương
4. Yêu cầu về kiểm tra đánh giá bám sát chuẩn ktkn
4.1 Quan niệm về kiểm tra dánh giá
4.2. Hai chức năng cơ bản của kiểm tra đánh giá
a) Chức năng xác định
b) CHức năng điều khiển
4.3. Yêu cầu kiểm tra đánh giá
a) KTĐG phải căn cứ vào chuẩn KTKN của từng môn học, cấp học; các y/c cơ bản, tối thiểu về ktkn của hs sau mỗi giai đoạn, mỗi lớp mỗi cấp học.
b) CHỉ đạo ktra viẹc thực hiện chương trình, khoạch giảng dạy, học tập của các nhà trường; tăng cường đổi mới khâu kiểm tra, đánh giá thường xuyên, định kỳ; đảm bảo chất lượng ktra, dánh giá chính xác, khách quan; không hình thức đối phó nhưng không gây áp lực nặngnề
c) Áp dụng các pp phan tích hiện đại để tăng cường tính tương đương của các đề ktra, thi. Kết hợp thật hợp lý các hình thức ktra. Thi vấn đáp, tự luận. trắc nghịêm nhằm hạn chế lối học tủ. học lệch, học vẹt; phát huy ưu điểm và hạn chế nhược điểm của mỗi hình thức
d) Đánh giá chính xác, đúng thực trạng
e) Đánh giá kịp thời, có tác dụng giáo dục và động viên sự t iến bộ của HS, giúp hs sửa chữa thiếu sót.
g) Đánh giá kết quả học tập , thành tích học tập của HS không chỉ đánh gía kết quả cuối cùng mà cần chú ý cả quá trình học tập.
h)Khi đánh giá hoạt động dạy học không chỉ đánh giá thành tích học tập của HS mà còn bao gồm đánh giá cả hoạt động dạy học nhằm cải tiến haọt động dạy học
i) Kết hợp thật hợp lý giữa đánh giá định tính và định lượng
k) Kết hợp đánh giá trong và đánh giá ngoài.
4.4. Các tiêu chí đánh giá
a) Đảm bảo tính toàn diện
b) Đảm bảo độ tin cậy
c) Đảm bảo tính khả thi
d) Đảm bảo yêu cầu phân hóa
e) Đảm bảo hiêu quả
LỚP 6
Chủ đề
Mức độ cần đạt
Ghi chú
I. Ôn tập và bổ túc về số tự nhiên
1. ... rình bậc nhất hai ẩn.
Về kiến thức:
 Hiểu khái niệm phương trình bậc nhất hai ẩn, nghiệm và cách giải phương trình bậc nhất hai ẩn.
Ví dụ. Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình và biểu diễn tập nghiệm trên mặt phẳng toạ độ:
 a) 2x – 3y = 0 b) 2x - 0y = 1.
2. Hệ hai phương trình bậc nhất hai ẩn.
Về kiến thức:
 Hiểu khái niệm hệ hai phương trình bậc nhất hai ẩn và nghiệm của hệ hai phương trình bậc nhất hai ẩn.
3. Giải hệ phương trình bằng phương pháp cộng đại số, phương pháp thế.
Về kỹ năng:
 Vận dụng được các phương pháp giải hệ hai phương trình bậc nhất hai ẩn: Phương pháp cộng đại số, phương pháp thế. 
Không dùng cách tính định thức để giải hệ hai phương trình bậc nhất hai ẩn.
4. Giải bài toán bằng cách lập hệ phương trình. 
Về kỹ năng:
- Biết cách chuyển bài toán có lời văn sang bài toán giải hệ phương trình bậc nhất hai ẩn.
- Vận dụng được các bước giải toán bằng cách lập hệ hai phương trình bậc nhất hai ẩn.
 Ví dụ. Tìm hai số biết tổng của chúng bằng 156, nếu lấy số lớn chia cho số nhỏ thì được thương là 6 và số dư là 9.
 Ví dụ. Hai xí nghiệp theo kế hoạch phải làm tổng cộng 360 dụng cụ. Xí nghiệp I đã vượt mức kế hoạch 12%, xí nghiệp II đã vượt mức kế hoạch 10%, do đó hai xí nghiệp đã làm tổng cộng 400 dụng cụ. Tính số dụng cụ mỗi xí nghiệp phải làm theo kế hoạch.
IV. Hàm số y = ax2 (a ¹ 0). Phương trình bậc hai một ẩn
1. Hàm số y = ax2 (a ¹ 0). Tính chất. Đồ thị. 
Về kiến thức:
 Hiểu các tính chất của hàm số y = ax2. 
Về kỹ năng:
 Biết vẽ đồ thị của hàm số y = ax2 với giá trị bằng số của a.
 - Chỉ nhận biết các tính chất của hàm số y = ax2 nhờ đồ thị. Không chứng minh các tính chất đó bằng phương pháp biến đổi đại số.
- Chỉ yêu cầu vẽ đồ thị của hàm số y = ax2 (a ¹ 0) với a là số hữu tỉ.
2. Phương trình bậc hai một ẩn.
Về kiến thức:
 Hiểu khái niệm phương trình bậc hai một ẩn.
Về kỹ năng:
 Vận dụng được cách giải phương trình bậc hai một ẩn, đặc biệt là công thức nghiệm của phương trình đó (nếu phương trình có nghiệm).
 Ví dụ. Giải các phương trình:
 a) 6x2 + x - 5 = 0; b) 3x2 + 5x + 2 = 0.
3. Hệ thức Vi-ét và ứng dụng.
Về kỹ năng:
 Vận dụng được hệ thức Vi-ét và các ứng dụng của nó: tính nhẩm nghiệm của phương trình bậc hai một ẩn, tìm hai số biết tổng và tích của chúng.
 Ví dụ. Tìm hai số x và y biết x + y = 9 và xy = 20.
4. Phương trình quy về phương trình bậc bai.
Về kiến thức:
 Biết nhận dạng phương trình đơn giản quy về phương trình bậc hai và biết đặt ẩn phụ thích hợp để đưa phương trình đã cho về phương trình bậc hai đối với ẩn phụ.
Về kỹ năng:
 Vận dụng được các bước giải phương trình quy về phương trình bậc hai.
 Chỉ xét các phương trình đơn giản quy về phương trình bậc hai: ẩn phụ là đa thức bậc nhất, đa thức bậc hai hoặc căn bậc hai của ẩn chính.
 Ví dụ. Giải các phương trình:
 a) 9x4 -10x2 + 1 = 0
 b) 3(y2 + y)2 - 2(y2 + y) - 1 = 0
 c) 2x - 3 + 1 = 0.
5. Giải bài toán bằng cách lập phương trình bậc hai một ẩn. 
Về kỹ năng:
- Biết cách chuyển bài toán có lời văn sang bài toán giải phương trình bậc hai một ẩn.
- Vận dụng được các bước giải toán bằng cách lập phương trình bậc hai.
 Ví dụ. Tính các kích thước của một hình chữ nhật có chu vi bằng 120m và diện tích bằng 875m2.
 Ví dụ. Một tổ công nhân phải làm 144 dụng cụ. Do 3 công nhân chuyển đi làm việc khác nên mỗi người còn lại phải làm thêm 4 dụng cụ. Tính số công nhân lúc đầu của tổ nếu năng suất của mỗi người như nhau.
V. Hệ thức lượng trong tam giác vuông
1. Một số hệ thức trong tam giác vuông.
Về kiến thức:
 Hiểu cách chứng minh các hệ thức.
Về kỹ năng:
 Vận dụng được các hệ thức đó để giải toán và giải quyết một số trường hợp thực tế.
Cho tam giác ABC vuông ở A có AB = 30 cm, BC = 50 cm. Kẻ đường cao AH. Tính 
a) Độ dài BH;
b) Độ dài AH.
2. Tỉ số lượng giác của góc nhọn. Bảng lượng giác. 
Về kiến thức:
- Hiểu các định nghĩa: sina, cosa, tana, cota. 
- Biết mối liên hệ giữa tỉ số lượng giác của các góc phụ nhau.
Về kỹ năng:
- Vận dụng được các tỉ số lượng giác để giải bài tập.
- Biết sử dụng bảng số, máy tính bỏ túi để tính tỉ số lượng giác của một góc nhọn cho trước hoặc số đo của góc khi biết tỉ số lượng giác của góc đó.
Cũng có thể dùng các kí hiệu tga, cotga. 
 Ví dụ. Cho tam giác ABC có Â = 40°, AB = 10cm, AC = 12cm. Tính diện tích tam giác ABC.
3. Hệ thức giữa các cạnh và các góc của tam giác vuông (sử dụng tỉ số lượng giác).
Về kiến thức:
 Hiểu cách chứng minh các hệ thức giữa các cạnh và các góc của tam giác vuông.
Về kỹ năng:
 Vận dụng được các hệ thức trên vào giải các bài tập và giải quyết một số bài toán thực tế.
 Ví dụ. Giải tam giác vuông ABC biết  = 90°, AC = 10cm và = 30°.
4. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. 
Về kỹ năng:
 Biết cách đo chiều cao và khoảng cách trong tình huống có thể được.
VI. Đường tròn
1. Xác định một đường tròn.
- Định nghĩa đường tròn, hình tròn.
- Cung và dây cung.
- Sự xác định một đường tròn, đường tròn ngoại tiếp tam giác.
Về kiến thức:
 Hiểu :
 + Định nghĩa đường tròn, hình tròn.
 + Các tính chất của đường tròn.
 + Sự khác nhau giữa đường tròn và hình tròn.
 + Khái niệm cung và dây cung, dây cung lớn nhất của đường tròn.
Về kỹ năng:
- Biết cách vẽ đường tròn qua hai điểm và ba điểm cho trước. Từ đó biết cách vẽ đường tròn ngoại tiếp một tam giác.
- Ứng dụng: Cách vẽ một đường tròn theo điều kiện cho trước, cách xác định tâm đường tròn. 
 Ví dụ. Cho tam giác ABC và M là trung điểm của cạnh BC. Vẽ MD ^ AB và ME ^ AC. Trên các tia BD và CE lần lượt lấy các điểm I, K sao cho D là trung điểm của BI, E là trung điểm của CK. Chứng minh rằng bốn điểm B, I, K, C cùng nằm trên một đường tròn.
2. Tính chất đối xứng.
- Tâm đối xứng.
- Trục đối xứng.
- Đường kính và dây cung.
- Dây cung và khoảng cách đến tâm.
Về kiến thức:
 Hiểu được tâm đường tròn là tâm đối xứng của đường tròn đó, bất kì đường kính nào cũng là trục đối xứng của đường tròn. Hiểu được quan hệ vuông góc giữa đường kính và dây, các mối liên hệ giữa dây cung và khoảng cách từ tâm đến dây.
Về kỹ năng:
 Biết cách tìm mối liên hệ giữa đường kính và dây cung, dây cung và khoảng cách từ tâm đến dây.
- Không đưa ra các bài toán chứng minh phức tạp.
- Trong bài tập nên có cả phần chứng minh và phần tính toán, nội dung chứng minh ngắn gọn kết hợp với kiến thức về tam giác đồng dạng.
3. Ví trí tương đối của đường thẳng và đường tròn, của hai đường tròn.
Về kiến thức:
- Hiểu được vị trí tương đối của đường thẳng và đường tròn, của hai đường tròn qua các hệ thức tương ứng (d R, d = r + R, ).
- Hiểu điều kiện để mỗi vị trí tương ứng có thể xảy ra.
- Hiểu các khái niệm tiếp tuyến của đường tròn, hai đường tròn tiếp xúc trong, tiếp xúc ngoài. Dựng được tiếp tuyến của đường tròn đi qua một điểm cho trước ở trên hoặc ở ngoài đường tròn.
- Biết khái niệm đường tròn nội tiếp tam giác.
Về kỹ năng:
- Biết cách vẽ đường thẳng và đường tròn, đường tròn và đường tròn khi số điểm chung của chúng là 0, 1, 2.
- Vận dụng các tính chất đã học để giải bài tập và một số bài toán thực tế.
 Ví dụ. Cho đoạn thẳng AB và một điểm M không trùng với cả A và B. Vẽ các đường tròn (A; AM) và (B; BM). Hãy xác định vị trí tương đối của hai đường tròn này trong các trường hợp sau:
a) Điểm M nằm ngoài đường thẳng AB.
b) Điểm M nằm giữa A và B.
c) Điểm M nằm trên tia đối của tia AB (hoặc tia đối của tia BA).
 Ví dụ. Hai đường tròn (O) và (O') cắt nhau tại A và B. Gọi M là trung điểm của OO'. Qua A kẻ đường thẳng vuông góc với AM, cắt các đường tròn (O) và (O') lần lượt ở C và D. Chứng minh rằng AC = AD.
VII. Góc với đường tròn
1. Góc ở tâm. Số đo cung.
- Định nghĩa góc ở tâm.
- Số đo của cung tròn.
Về kiến thức:
 Hiểu khái niệm góc ở tâm, số đo của một cung.
Về kỹ năng:
 Ứng dụng giải được bài tập và một số bài toán thực tế.
Ví dụ. Cho đường tròn (O) và dây AB. Lấy hai điểm M và N trên cung nhỏ AB sao cho chúng chia cung này thành ba cung bằng nhau: 
AM = MN = NB.
Các bán kính OM và ON cắt AB lần lượt tại C và D. Chứng minh rằng AC = BD và AC > CD.
2. Liên hệ giữa cung và dây.
Về kiến thức:
 Nhận biết được mối liên hệ giữa cung và dây để so sánh được độ lớn của hai cung theo hai dây tương ứng và ngược lại.
Về kỹ năng:
 Vận dụng được các định lí để giải bài tập.
Ví dụ. Cho tam giác ABC cân tại A và nội tiếp đường tròn (O). Biết  = 50°. Hãy so sánh các cung nhỏ AB, AC và BC.
3. Góc tạo bởi hai cát tuyến của đường tròn.
- Định nghĩa góc nội tiếp.
- Góc nội tiếp và cung bị chắn.
- Góc tạo bởi tiếp tuyến và dây cung.
- Góc có đỉnh ở bên trong hay bên ngoài đường tròn.
- Cung chứa góc. Bài toán quỹ tích “cung chứa góc”. 
Về kiến thức:
- Hiểu khái niệm góc nội tiếp, mối liên hệ giữa góc nội tiếp và cung bị chắn.
- Nhận biết được góc tạo bởi tiếp tuyến và dây cung.
- Nhận biết được góc có đỉnh ở bên trong hay bên ngoài đường tròn, biết cách tính số đo của các góc trên.
- Hiểu bài toán quỹ tích “cung chứa góc” và biết vận dụng để giải những bài toán đơn giản.
Về kỹ năng:
 Vận dụng được các định lí, hệ quả để giải bài tập.
 Ví dụ. Cho tam giác ABC nội tiếp đường tròn (O, R). Biết  = a (a < 90°). Tính độ dài BC.
 Ví dụ. Cho tam giác ABC vuông ở A, có cạnh BC cố định. Gọi I là giao điểm của ba đường phân giác trong. Tìm quỹ tích điểm I khi A thay đổi.
4. Tứ giác nội tiếp đường tròn.
- Định lí thuận.
- Định lí đảo.
Về kiến thức:
 Hiểu định lí thuận và định lí đảo về tứ giác nội tiếp.
Về kỹ năng:
 Vận dụng được các định lí trên để giải bài tập về tứ giác nội tiếp đường tròn.
 Ví dụ. Cho tam giác nhọn ABC có các đường cao AD, BE, CF đồng quy tại H. Nối DE, EF, FD. Tìm tất cả các tứ giác nội tiếp có trong hình vẽ.
5. Công thức tính độ dài đường tròn, diện tích hình tròn. Giới thiệu hình quạt tròn và diện tích hình quạt tròn.
Về kỹ năng:
 Vận dụng được công thức tính độ dài đường tròn, độ dài cung tròn, diện tích hình tròn và diện tích hình quạt tròn để giải bài tập.
 Không chứng minh các công thức S = pR2 và C = 2pR. 
VIII. Hình trụ, hình nón, hình cầu
- Hình trụ, hình nón, hình cầu.
- Hình khai triển trên mặt phẳng của hình trụ, hình nón.
- Công thức tính diện tích xung quanh và thể tích của hình trụ, hình nón, hình cầu.
Về kiến thức:
 Qua mô hình, nhận biết được hình trụ, hình nón, hình cầu và đặc biệt là các yếu tố: đường sinh, chiều cao, bán kính có liên quan đến việc tính toán diện tích và thể tích các hình.
Về kỹ năng:
 Biết được các công thức tính diện tích và thể tích các hình, từ đó vận dụng vào việc tính toán diện tích, thể tích các vật có cấu tạo từ các hình nói trên.
 Không chứng minh các công thức tính diện tích, thể tích của hình trụ, hình nón, hình cầu.

Tài liệu đính kèm:

  • docChuan kien thuc ky nang toan THCS.doc