Đề kiểm tra chương I môn Đại số lớp 8 (tiết 21) (đề số 1)

Đề kiểm tra chương I môn Đại số lớp 8 (tiết 21) (đề số 1)

I. Trắc nghiệm

Khoanh tròn chữ cái đứng trước câu trả lời đúng

Câu 1: 5x3y2z . x4z3 =

A. x7y2z4 B. x12y2z3 C. 3x7y2z4 D. xy2z2

Câu 2: Tìm x biết: 3x2 = 5x

A. x =0; B. x = C. x = 0; x = D. x = 0; x =

Câu 3: Không thực hiện phép chia hãy cho biết đa thức:

A = 3x3 – 4x2 + 6x2y + 2 có chia hết cho đơn thức: B = 2x2 không? Tại sao?

A. A chia hết cho B vì mọi hạng tử của A đều chia hết cho B.

B. A không chia hết cho B vì A có hạng tử là 2 không chia hêt cho B

C. A không chia hết cho B vì hệ số cao nhất của A là 3 không chia hết cho hệ số cao nhất của B là 2.

D. A không chia hết cho B vì ba hạng tử đầu của A chia hết cho B còn hạng tử cuối cùng là 2 không chia hết cho B.

 

doc 3 trang Người đăng hoangquan Lượt xem 1100Lượt tải 0 Download
Bạn đang xem tài liệu "Đề kiểm tra chương I môn Đại số lớp 8 (tiết 21) (đề số 1)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ KIỂM TRA CHƯƠNG I MÔN ĐẠI SỐ LỚP 8(tiết 21)( Đề số 1)
Thời gian làm bài: 45 phút
Họ và tên: .....................................lớp:........Trường:...................................
 Điểm Nhận xét của giáo viên
Trắc nghiệm
Khoanh tròn chữ cái đứng trước câu trả lời đúng
Câu 1: 5x3y2z . x4z3 =
A. x7y2z4 B. x12y2z3 C. 3x7y2z4 D. xy2z2
Câu 2: Tìm x biết: 3x2 = 5x
A. x =0; B. x = C. x = 0; x = D. x = 0; x = 
Câu 3: Không thực hiện phép chia hãy cho biết đa thức:
A = 3x3 – 4x2 + 6x2y + 2 có chia hết cho đơn thức: B = 2x2 không? Tại sao?
A. A chia hết cho B vì mọi hạng tử của A đều chia hết cho B.
B. A không chia hết cho B vì A có hạng tử là 2 không chia hêt cho B
C. A không chia hết cho B vì hệ số cao nhất của A là 3 không chia hết cho hệ số cao nhất của B là 2.
D. A không chia hết cho B vì ba hạng tử đầu của A chia hết cho B còn hạng tử cuối cùng là 2 không chia hết cho B.
Câu 4: Giá trị của biểu thức: (-x2y3)3 : ( -x2y3 )2 tại x = , y = -1 bằng: A. ; B. ; C.-4; D. 4
Tự luận
Câu 5: Phân tích đa thức thành nhân tử:
 4x2 – y2 + 4x + 1
Câu 6: Cho đa thức: A = x3 -3x + 7 – x2
 B = x – 1
Hãy chia A cho B rồi viết dưới dạng: A = B.Q + R.
Câu 7: Chứng minh rằng: x2 – x + 1 > 0 với mọi x R
Bài làm phần tự luận
..................................................................................................................................................................................................................................................................................................................................................................
Đáp án và thang điểm
I.Trắc nghiệm: Mỗi câu đúng cho một diểm
1.C; 2.D; 3.D; 4.B
II. Tự luận
Câu 5: (2 điểm)
 Nhóm được: (4x2 + 4x + 1) – y2 cho 0,5 điểm
	Phân tích được: (2x + 1) – y2 cho 0,5 điểm
	Đưa về tích: (2x + 1 – y)( 2x +1 +y) cho 1 điểm
Câu 6: (2 điểm)
	Sắp xếp đúng rồi đặt chia: A = x3 – x2 – 3x + 7
 x3 – x2 – 3x + 7 x – 1 cho 0,5 điểm
Chia đúng cho 1 điểm (nếu các hạng tử đồng dạng không đặt trên cùng một cột thì trừ 0,5 điểm) 
 x3 – x2 – 3x + 7 x – 1 cho 0,5 điểm
 x3 – x2 x2 - 3 
	 -3x + 7
 -3x + 3
 4
Vậy: x3 – x2 – 3x + 7 = ( x – 1)( x2 – 3) + 4 cho 0,5 điểm
Câu 7: ( 2 điểm):
 Biến đổi vế trái: x2 – x + 1 
 = [x2 – 2.x + ( )2 ] - + 1 cho 0,5 điểm
	 = ( x - )2 + cho 0,5 điểm
 Nêu được: ( x - )2 0 với mọi x cho 0,5 điểm
 Kết luận được: ( x - )2 + > 0 với mọi xR cho 0,5 điểm

Tài liệu đính kèm:

  • docSo L8 C101.doc