Cho tam giác ABC vuông cân tại B, nội tiếp đường tròn (O;R). Trên cung AC có chứa điểm B, lấy 1 điểm D tùy ý; trên tia đối của tia DA lấy điểm E sao cho DE = DC.
a. Chứng minh rằng trung điểm I của EC và điểm D thẳng hàng với 1 điểm thứ ba cố định.
b.Tìm tập hợp các điểm E khi D di động trên cung ABC.
c.Xác định vị trí của D trên cung ABC để độ dài AE lớn nhất, tính độ dài ấy theo R.
Sở GD-ĐT Thanh Hóa Đề thi học sinh giỏi lớp 9 Trường THPT Mai Anh Tuấn Môn : Toán - Năm học: 2005 - 2006 (Thời gian làm bài: 180 phút) Bài 1: (2,0đ) Tính giá trị biểu thức: A= Bài 2: (5,0đ) Cho parabol(P): y=x a.Viết phương trình đường thẳng (d) di qua 2 điểm A và B thuộc (P) và có hoành độ lần lượt là 2 và - 4. b.Tìm điểm C trên cung AB của (P) sao cho tam giác ABC có diện tích lớn nhất Bài 3: (4,0đ) Cho tam giác ABC vuông cân tại B, nội tiếp đường tròn (O;R). Trên cung AC có chứa điểm B, lấy 1 điểm D tùy ý; trên tia đối của tia DA lấy điểm E sao cho DE = DC. a. Chứng minh rằng trung điểm I của EC và điểm D thẳng hàng với 1 điểm thứ ba cố định. b.Tìm tập hợp các điểm E khi D di động trên cung ABC. c.Xác định vị trí của D trên cung ABC để độ dài AE lớn nhất, tính độ dài ấy theo R. Bài 4: (4,0 đ) Cho lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều. Điểm A’ cách đều các điểm A, B, C. a. Chứng minh rằng chân đường cao hạ từ đỉnh A’ của lăng trụ trùng với tam của đáy ABC b. Chứng minh rằng mặt bên BCC’B’ của lăng trụ là hình chữ nhật. Bài 5: (5,0 đ) a.Giải phương trình: (x - 1) (x - 3) (x - 4) (x - 6) + 9 = 0 b.Tìm nghiệm nguyên dương của phương trình: 2x+7xy + 6y= 60 (Cán bộ coi thi không giải thích gì thêm)
Tài liệu đính kèm: