Giáo án Hình học lớp 7 - Trường THCS Bùi Nhân

Giáo án Hình học lớp 7 - Trường THCS Bùi Nhân

I. Mục tiêu:

-HS hiểu thế nào là hai góc đối đỉnh; nêu được tính chất: hai góc đối đỉnh thì bằng nhau.

-HS có kĩ năng: vẽ được góc đối đỉnh với một góc cho trước; nhận biết các góc đối đỉnh trong một hình; bước đầu tập suy luận.

II.Chuẩn bị

Bảng phụ ,thước kẻ.

III. Tiến trình dạy học:

1. Các hoạt động trên lớp:

 

doc 136 trang Người đăng hoangquan Lượt xem 541Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Hình học lớp 7 - Trường THCS Bùi Nhân", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 Ngày soạn : 25/8/2008
 Chương I: ĐƯỜNG THẲNG VUÔNG GÓC.
	ĐƯỜNG THẲNG SONG SONG.
Tiết 1:	§1 HAI GÓC ĐỐI ĐỈNH
I. Mục tiêu:
-HS hiểu thế nào là hai góc đối đỉnh; nêu được tính chất: hai góc đối đỉnh thì bằng nhau.
-HS có kĩ năng: vẽ được góc đối đỉnh với một góc cho trước; nhận biết các góc đối đỉnh trong một hình; bước đầu tập suy luận.
II.Chuẩn bị
Bảng phụ ,thước kẻ.
III. Tiến trình dạy học:
1. Các hoạt động trên lớp:
Hoạt động của GV
Hoạt động của HS
Ghi bảng
Hoạt động 1: Thế nào là hai góc đối đỉnh 
GV cho HS vẽ hai đường thẳng xy và x’y’ cắt nhau tại O. GV viết kí hiệu góc và giới thiệu 1,3 là hai góc đối đỉnh. GV cho HS nhận xét quan hệ cạnh của hai góc.
->GV yêu cầu HS rút ra định nghĩa.
GV hỏi: 1 và 4 có đối đỉnh không? Vì sao?
Củng cố: GV yêu cầu HS làm bài 1 và 2 SGK/82:
1)
a) xOy và x’Oy’ là hai góc đối đỉnh vì cạnh Ox là tia đối của cạnh Oy’.
b) x’Oy và xOy’ là hai góc đối đỉnh vì cạnh Ox là tia đối của cạnh Ox’ và cạnh Oy là tia đối của cạnh Oy’.
GV gọi HS đứng tại chỗ trả lời.
-HS phát biểu định nghĩa.
-HS giải thích như định nghĩa.
2)
a) Hai góc có mỗi cạnh của góc này là tia đối của một cạnh của góc kia được gọi là hai góc đối đỉnh.
b) Hai đường thẳng cắt nhau tạo thành hai cặp góc đối đỉnh.
I) Thế nào là hai góc đối đỉnh:
 Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
Hình 1
Hoạt đông 2: Tính chất của hai góc đối đỉnh.
GV yêu cầu HS làn ?3: xem hình 1.
a) Hãy đo 1, 3. So sánh hai góc đó.
b) Hãy đo 2, 4. So sánh hai góc đó.
c) Dự đoán kết quả rút ra từ câu a, b. GV cho HS hoạt động nhóm trong 5’ và gọi đại diện nhóm trình bày. 
-GV cho HS nhình hình thể để chứng minh tính chất trên 
GV: Hai góc bằng nhau có đối đỉnh không?
a) 1 = 3 = 32o
b) 2 = 4 = 148o
c) Dự đoán: Hai góc đối đỉnh thì bằng nhau.
HS: chưa chắc đã đối đỉnh.
II) Tính chất của hai góc đối đỉnh:
Hai góc đối đỉnh thì bằng nhau.
Hoạt động 3: Củng cố 
GV treo bảng phụ Bài 1 SBT/73:
Xem hình 1.a, b, c, d, e. Hỏi cặp góc nào đối đỉnh? Cặp góc nào không đối đỉnh? Vì sao?
Bài 1 SBT/73:
a) Các cặp góc đối đỉnh: hình 1.b, d vì mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
b) Các cặp góc không đối đỉnh: hình 1.a, c, e. Vì mỗi cạnh của góc này không là tia đối của một cạnh của góc kia.
2. Hướng dẫn về nhà: 
-Học bài, làm 3, 4 SGK/82; 3, 4, 5, 7 SBT/74.
-Chuẩn bị bài luyên tập.
 Ngày soạn : 30/8/2008
Tiết 2	LUYỆN TẬP
I. Mục tiêu:
- HS được khắc sâu kiến thức về hai góc đối đỉnh.
- Rèn luyện kĩ năng vẽ hình, áp dụng lí thuyết vào bài toán.
II.Chuẩn bị
Bảng phụ ,thước kẻ. 
III: Tiến trình dạy học:
1. Kiểm tra bài cũ:
Thế nào là hai góc đối đỉnh? Nêu tính chất của hai góc đối đỉnh?
Sữa bài 4 SGK/82.
2. Các hoạt động trên lớp:
 Hoạt động của GV
 Hoạt động của HS
Ghi bảng
Hoạt động 1: Luyện tập (30 phút)
Bài 5 SGK/82:
a) Vẽ ABC = 560
b) Vẽ ABC’kề bù vớiABC . ABC’ = ?
c) Vẽ C’BA’kề bù
với ABC. Tính C’BA’.
- GV gọi HS đọc đề và gọi HS nhắc lại cách vẽ góc có số đo cho trước, cách vẽ góc kề bù.
- GV gọi các HS lần lượt lên bảng vẽ hình và tính.
- GV gọi HS nhắc lại tính chất hai góc kề bù, hai góc đối đỉnh, cách chứng minh hai góc đối đỉnh.
Bài 5 SGK/82:
b) Tính ABC’ = ?
Vì ABC vàABC’ kề bù nên:
ABC + ABC’ = 1800
560 + ABC’ = 1800
ABC’ = 1240
c)Tính C’BA’:
Vì C’BA’ kề bù với ABC’ nên:
C’BA’ +ABC’= 
C’BA’+1240 = 
C’BA’= 560 
Bài 6 SGK/83:
Vẽ hai đường thẳng cắt nhau sao cho trong các góc tạo thành có một góc 470. tính số đo các góc còn lại.
- GV gọi HS đọc đề.
- GV gọi HS nêu cách vẽ và lên bảng trình bày.
- GV gọi HS nhắc lại các nội dung như ở bài 5.
Bài 6 SGK/83:
a) Tính xOy:
vì xx’ cắt yy’ tại O
=> Tia Ox là tia đối của tia Ox’
 Tia Oy là tia đối của tia Oy’
Nên xOy đối đỉnh x’Oy’
=> xOy = x’Oy’ = 470
b) Tính xOy’
Vì xOy và xOy’ kề bù nên:
xOy + xOy’ = 1800
470 + xOy’ = 1800
=> xOy’ = 1330
c) Tính yOx’= ?
Vì yOx’ và xOy’ đối đỉnh nên yOx’ = xOy’
=> yOx’ = 1330
Bài 9 SGK/83:
Vẽ góc vuông xAy. Vẽ góc x’Ay’ đối đỉnh với góc xAy. Hãy viết tên hai góc vuông không đối đỉnh.
- GV gọi HS đọc đề.
- GV gọi HS nhắc lại thế nào là góc vuông, thế nào là hai góc đối đỉnh, hai góc như thế nào thì không đối đỉnh.
Bài 9 SGK/83:
Hai góc vuông không đối đỉnh:
xAy và yAx’;
xAy và xAy’;
xAy’ và y’Ax
Hoạt động 2: Nâng cao
Đề bài: Cho xOy = 700, Om là tia phân giác của góc ấy.
a) Vẽ aOb đối đỉnh với xOy biết rằng Ox và Oa là hai tia đối nhau. Tính aOm.
b) Gọi Ou là tia phân giác của aOy. uOb là góc nhọn, vuông hay tù?
b) Ou là tia phân giác aOy
=> aOu = 550
aOb= xOy = 700 (đđ)
=>bOU = 1250 > 900
=> bOU là góc tù.
Giải:
a) Tính aOm= ?
Vì Ox và Oa là hai tia đối nhau nên aOy và xOy là hai góc kề bù.
=> aOy = 1800 – xOy
=> aOy = 1100
Om: tia phân giác yOx
=> yOm = yOu= 350
Ta có:aOm= aOy+ yOm = 1450
2. Hướng dẫn về nhà:
	- Ôn lại lí thuyết, hoàn tất các bài vào tập.
	- Chuẩn bị bài 2: Hai đường thẳng vuông góc.
 Ngày soạn : 06/9/2008
Tiết 3
§2	HAI ĐƯỜNG THẲNG VUÔNG GÓC
I. Mục tiêu:
	- HS hiểu thế nào là hai đường thẳng vuông góc với nhau.
	- Công nhận tính chất: Có duy nhất một đường thẳng b đi qua A và b^a.
	- Hiểu thế nào là đường trung trực của một đoạn thẳng.
	- Biết vẽ đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
	- Biết vẽ đường trung trực của một đoạn thẳng.
	- HS bước đầu tập suy luận.
II. Chuẩn bị.
Bảng phụ , SGK, thước kẻ.
III: Tiến trình dạy học:
1. Các hoạt động trên lớp:
Hoạt động của GV
Hoạt động của HS
Ghi bảng
Hoạt động 1: Thế nào là hai đường thẳng vuông góc 
GV yêu cầu: Vẽ hai đường thẳng xx’ và yy’ cắt nhau và trong các góc tạo thành có một góc vuông. Tính số đo các góc còn lại.
- GV gọi HS lên bảng thực hiện, các HS khác làm vào tập.
-> GV giới thiệu hai đường thẳng xx’ và yy’ trên hình gọi là hai đường thẳng vuông góc => định nghĩa hai đường thẳng vuông góc.
- GV gọi HS phát biểu và ghi bài.
- GV giới thiệu các cách gọi tên.
Vì xOy = x’Oy’ (hai góc đối đỉnh)
=> xOy = 900
Vì yOx’ kề bù với xOy nên yOx’ = 900
Vì xOy’ đối đỉnh với yOx’ nên xOy’ = yOx’ = 900
I) Thế nào là hai đường thẳng vuông góc:
Hai đường thẳng xx’ và yy’ cắt nhau và trong các góc tạo thành có một góc vuông được gọi là hai đường thẳng vuông góc. Kí hiệu là xx’^yy’.
Hoạt động 2: Vẽ hai đường thẳng vuông góc 
?4 Cho O và a, vẽ a’ đi qua O và a’^a.
- GV cho HS xem SGK và phát biểu cách vẽ của hai trường hợp
- GV: Các em vẽ được bao nhiêu đường a’ đi qua O và a’^a.
-> Rút ra tính chất.
HS xem SGK và phát biểu.
- Chỉ một đường thẳng a’.
II) Vẽ hai đường thẳng vuông góc:
Vẽ a’ đi qua O và a’^a.
Có hai trường hợp: 
1) TH1: Điểm OÎa
(Hình 5 SGK/85)
b) TH2: OÏa.
(Hình 6 SGK/85)
Tính chất:
Có một và chỉ một đường thẳng a’ đi qua O và vuông góc với đường thẳng a cho trước.
Hoạt động 3: Đường trung trực của đoạn thẳng 
GV yêu cầu HS: Vẽ AB. Gọi I là trung điểm của AB. Vẽ xy qua I và xy^AB.
->GV giới thiệu: xy là đường trung trực của AB.
=>GV gọi HS phát biểu định nghĩa.
HS phát biểu định nghĩa.
III) Đường trung trực của đoạn thẳng:
Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng ấy.
A, B đối xứng nhau qua xy
Hoạt động 4: Củng cố 
Bài 11: GV cho HS xem SGK và đứng tại chỗ đọc.
Bài 12: Câu nào đúng, câu nào sai:
a) Hai đường thẳng vuông góc thì cắt nhau.
b) Hai đường thẳng cắt nhau thì vuông góc.
Bài 14: Cho CD = 3cm. Hãy vẽ đường trung trực của đoạn thẳng ấy.
GV gọi HS nên cách vẽ và một HS lên bảng trình bày.
Bài 12:
Câu a đúng, câu b sai.
Minh họa:
Bài 14:
Vẽ CD = 3cm bằng thước có chia vạch.
- Vẽ I là trung điểm của CD.
- Vẽ đường thẳng xy qua I và xy^CD bằng êke.
2. Hướng dẫn về nhà:
	- Học bài, làm các bài 13 SGK/86; 10,14,15 SBT/75.
	- Chuẩn bị bài luyện tập.
 Ngày soạn : 09/9/2008
Tiết 4	LUYỆN TẬP
I. Mục tiêu:
	- HS được củng cố lại các kiến thức về hai đường thẳng vuông góc.
	- Rèn luyện kĩ năng vẽ hình, vẽ bằng nhiều dụng cụ khác nhau.
	- Rèn tính cẩn thận, chính xác.
II. Chuẩn bị.
Bảng phụ , SGK, thước kẻ.
III: Tiến trình dạy học:
1. Kiểm tra bài cũ:
	HS 1:	1) Thế nào là hai đường thẳng vuông góc.
	2) Sữa bài 14 SBT/75
	HS 2:	1) Phát biểu định nghĩa đường trung trực của đoạng thẳng.
	2) Sữa bài 15 SBT/75
1. Các hoạt động trên lớp:
Hoạt động của GV
Hoạt động của HS
Ghi bảng
Hoạt động 1: Luyện tập 
1. Dạng 1: Kiểm tra hai đường thẳng vuông góc.
Bài 17 SGK/87:
-GV hướng dẫn HS đối với hình a, kéo dài đường thẳng a’ để a’ và a cắt nhau.
-HS dùng êke để kiểm tra và trả lời.
2. Dạng 2: Vẽ hình:
Bài 17 SGK/87:
-Hình a): a’ không vuông góc với a
-Hình b, c): a^a’
Bài 18:
Vẽ xOy = 450. lấy A trong xOy.
Vẽ d1 qua A và d1^Ox tại B
Vẽ d2 qua A và d2^Oy tại C
GV cho HS làm vào tập và nhắc lại các dụng cụ sử dụng cho bài này.
Bài 18:
Bài 19: Vẽ lại hình 11 rồi nói rõ trình tự vẽ.
GV gọi nhiều HS trình bày nhiều cách vẽ khác nhau và gọi một HS lên trình bày một cách.
Bài 19:
-Vẽ d1 và d2 cắt nhau tại O: góc d1Od2 = 600.
-Lấy A trong góc d2Od1.
-Vẽ AB^d1 tại B
-Vẽ BC^d2 tại C
Bài 20: Vẽ AB = 2cm, BC = 3cm. Vẽ đường trung trực của một đoạn thẳng ấy.
-GV gọi 2 HS lên bảng, mỗi em vẽ một trường hợp.
-GV gọi các HS khác nhắc lại cách vẽ trung trực của đoạn thẳng.
TH1: A, B, C thẳng hàng.
-Vẽ AB = 2cm.
-Trên tia đối của tia BA lấy điểm C: BC = 3cm.
-Vẽ I, I’ là trung điểm của AB, BC.
-Vẽ d, d’ qua I, I’ và d^AB, d’^BC.
=> d, d’ là trung trực của AB, BC.
TH2: A, B ,C không thẳng hàng.
-Vẽ AB = 2cm.
-Vẽ C Ï đường thẳng AB: BC = 3cm.
-I, I’: trung điểm của AB, BC.
-d, d’ qua I, I’ và d^AB, d’^BC.
=>d, d’ là trung trực của AB và BC.
Hoạt động 2: Nâng cao 
Đề bài: Vẽ xOy = 900. Vẽ tia Oz nằm giữa hai tia Ox và Oy. Trên nữa mặt phẳng bờ chứa tia Ox và không chứa Oz, vẽ tia Ot: xOt= yOz. Chứng minh Oz^Ot.
GV giới thiệu cho HS phương pháp chứng minh hai đường thẳng vuông góc và cho HS suy nghĩ làm bài. 3 em làm xong trước được chấm điểm. GV gọi một HS lên trình bày.
Giải:
Vì tia Oz nằm giữa hai tia Ox và Oy.
=> yOz + zOx = xOy = 900.
Mà yOz = xOt (gt)
=> xOt+ xOz = 900
=>zOt = 900
=>Oz^Ot
2. Hướng dẫn về nhà: 
	- Xem lại cách trình bày của các bài đã làm, ôn lại lí thuyết.
	- Chuẩn bị bài 3: Các góc tạo bởi một đường thẳng cắt hai đường thẳng.
 Ngày soạn : 12/9/2008
Tiết 5
§	CÁC GÓC TẠO BỞI MỘT ĐƯỜNG THẲNG
	CẮT HAI ĐƯỜNG THẲNG
I. Mục tiêu:
	- HS hiểu được tính chất: Cho hai đường thẳng và một cát tuyến. Nếu có một cặp góc so le trong bằng nhau thì: Hai góc so le trong còn lại bằng nhau, hai góc đồng vị bằng nhau, h ... g 3: Củng cố.
GV : Phát biểu định lý Tính chất ba đường phân giác của tam giác.
BT 36 sgkSGK/:
BT 38 sgk/73:
GV : phát phiếu học tập có in đề bài 73 cho các nhóm, yêu cầu HS hoạt động nhóm làm câu a, b.
Đại diện nhóm lên trình bày bài giải.
GV : Điểm O có cách đều 3 cạnh cảu tam giác không? Tại sao?
HS phát biểu.
BT 36 sgkSGK/:
BT 38 sgk/73:
BT 36 sgkSGK/:
GT
 DDEF
I nằm trong DDEF
IP^DE; IH^EF; 
IK^DF; IP=IH=IK
KL
 I là điểm chung của ba đường phân giác của tam giác.
Có : 
I nằm trong DDEF nên I nằm trong góc DEF
IP = IH (gt) Þ I thuộc tia phân giác của góc DEF.
Tương tự I cũng thuộc tia phân gáic của góc EDF, góc DFE.
Vậy I là điểm chung của ba đường phân giác của tam giác.
BT 38 sgk/73:
a) DIKL có :
 = 1800 (Tổng ba góc trong một tam giác)
620 + = 1800
Þ = 1800 – 620 = 1180
có = = 590
DKOL có :
 = 1800 – 590 = 1210
b) Vì O là giao điểm cảu 2 đường phân giác xuất phát từ K và L nên IO là tia phân giác của (Tính chất ba đường phân giác của tam giác)
Þ 
c) Theo chứng minh trên, O là điểm chung của ba đường phân giác của tam giác nên O cách đều ba cạnh của tam giác.
3. Hướng dẫn về nhà:
Học thuộc tính chất tia giác cân và tính chất ba đường phân giác của tam giác.
BT : 37, 39, 43 /72. 73 sgk.
Tiết 58	LUYỆN TẬP
I. Mục tiêu:
Củng cố định lý về tính chất ba đường phân gáic của tam giác , tính chất đường phân giác của một góc, đường phân giác của tam giác cân, tam giác đều.
Rèn luyện kĩ năng vẽ hình, phân tích và chứng minh bài toán. Chứng minh một dấu hiệu nhận biết tam giác cân.
HS thấy được ứng dụng thực tế cảu Tính chất ba đường phân giác của tam giác, của góc.
II. Chuẩn bị.
Bảng phụ , SGK, thước kẻ.
III: Tiến trình dạy học:
1. Các hoạt động trên lớp:
Hoạt động của thầy
Hoạt động của trò
Ghi bảng
Hoạt động 1: Luyện tập.
Bài 40 SGK/73:
Trọng tam của tam giác là gì? Làm thế nào để xác định trọng tâm G?
GV : Còn I được xác định như thế nào?
GV : DABC cân tại A, vậy phân giác AM cũng là đường gì?
GV : Tại sao A, G, I thẳng hàng?
Bài 42 SGK/73:
GV : hướng dẫn HS vẽ hình: kéo dài AD một đoạn DA’=DA
Bài 40 SGK/73:
HS : Đọc đề bài 40
HS : vẽ hình vào vở, một HS lên bảng vẽ hình, ghi GT – KL
GT
 DABC (AB = AC)
G : trọng tâm
I : Giao điểm ba đường phân giác.
KL
 A, G, I thẳng hàng.
Bài 42 SGK/73:
HS : Đọc đề bài toán
GT
 DABC
BD = DC
KL
 DABC cân
Bài 40 SGK/73:
Vì DABC cân tại A nên phân giác AM cũng là trung tuyến.
G là trong tâm nên GÎAM
I là giao điểm 3 đường phân giác nên I Î AM
Vậy A, G, I thẳng hàng
Bài 42 SGK/73:
Xét DADB và DA’DC có :
AD = A’D (gt)
 (đđ)
DB = DC (gt)
Þ DADB = DA’DC (c.g.c)
Þ (góc tương ứng)
và AB = A’C (cạnh tương ứng) (1)
mà 
Þ 
Þ DCAA’ cân
Þ AC = A’C (2)
Từ (1) và (2) suy ra : AB=AC
Þ DABC cân
2. Hướng dẫn về nhà:
Ôn lại định lí về tính chất đường phân giác trong tam giác, định nghĩa tam giác cân.
BT thêm :
Các câu sau đúng hay sai?
1) Trong tam giác cân, đường trung tuyến ứng với cạnh đáy đồng thời là đường phân giác của tam giác.
2) Trong tam giác đều, trọng tâm của tam giác cách đều ba cạnh của nó.
3) Trong tam giác cân, đường phân giác đồng thời là đường trung tuyến.
4) Trong một tam giác, giao điểm của ba đường phân giác cách mỗi đỉnh độ dài đường phân giác đi qua đỉnh đó.
5) Nếu một tam giác có một phân giác đồng thời là trung tuyến thì đó là tam giác cân.
Tiết 59
§	TÍNH CHẤT ĐƯỜNG TRUNG TRỰC CỦA
	MỘT ĐOẠN THẲNG
I. Mục tiêu:
Chứng minh được hai tính chất đặt trưng của đường trung trực của một đoạn thẳng dưới sự hướng dẫn của GV
Biết cách vẽ đường trung trực của đoạn thẳng và trung điểm của một đoạn thẳng như một ứng dụng cảu hia định lí trên.
Biết dùng các định lý này để chứng minh các định lí khác về sau và giải bài tập.
II. Chuẩn bị.
Bảng phụ , SGK, thước kẻ.
III: Tiến trình dạy học:
1. Kiểm tra bài cũ:
2. Các hoạt động trên lớp:
Hoạt động của thầy
Hoạt động của trò
Ghi bảng
Hoạt động 1: Định lí về tính chất các điểm thuộc đường trung trực.
GV : yêu cầu HS lấy mảnh giấy đả chuẩn bị ở nhà thực hành gấp hình theo hướng dẫn của sgk
GV : Tại sao nếp gấp 1 chính là đường trung trực của đoạn thẳng AB
GV : cho HS tiến hành tiếp và hỏi độ dài nếp gấp 2 là gì?
GV : Vậy khoảng cách này như thế nào với nhau?
GV : Khi lấy một điểm M bất kì trên trung trực của AB thì MA = MC hay M cách đều hai mút của đoạn thẳng AB.
Vậy điểm nằm trên trung trực của một đoạn thẳng có tính chất gì?
HS : Độ dài nếp gấp 2 là khoàng từ M tới hai điểm A, B.
HS : 2 khoảng cách này bằng nhau.
HS : Đọc định lí trong SGK
I. Định lí về tính chất các điểm thuộc đường trung trực :
a) Thực hành :
b) Định lí 1 (định lí thuận):
Hoạt động 2: Định lí đảo.
GV : Vẽ hình và cho HS làm ?1
GV : hướng dẫn HS chứng minh định lí
HS : đọc định lí
II) Định lí đảo: (SGK/75)
GT
 Đoạn thẳng AB
MA = MB
KL
 M thuc đường trung trực của đoạn thẳng AB
c/m : SGK/75
Hoạt động 3: Ứng dụng.
GV : Dựa trên tính chất các điểm cách đều hai đầu mút của một đoạn thẳng, ta có vẽ được đường trung trực của một đoạn thẳng bằng thước và compa.
HS : Vẽ hình theo hướng dẫn của sgk
HS : đọc chú ý.
III. Ứng dụng :
Chú ý : sgk/76
Hoạt động 4: Củng cố, luyện tập.
Bài 44 SGK/76:
GV : Yêu cầu HS dùng thước thẳng và compa vẽ đường trung trực của đoạn thẳng AB.
Bài 44 SGK/76:
HS : toàn lớp làm BT, một HS lên bảng vẽ hình.
Bài 44 SGK/76:
Có M thuộc đường trung trực của AB
Þ MB = MA = 5 cm (Tính chất các điểm trên trung trực của một đoạn thẳng)
3. Hướng dẫn về nhà:
Học bài, làm bài 47, 48, 51/76, 77 SGK
Tiết 60	LUYỆN TẬP
I. Mục tiêu:
Củng cố các định lý về tính chất đường trung trực của một đoạn thẳng.
Vận dụng các định lí đó vào việc giải các bài tập hình (chứng minh, dựng hình)
Rèn luyện kĩ năng vẽ đường trung trực của một đoạn thẳng cho trước, dựng đường thẳng qua một điểm cho trước và vuông góc với một đường thẳng cho trước bằng thước và compa
Giải bài toán thực tế có ứng dụng tính chất đường trung trực của một đoạn thẳng.
II. Chuẩn bị.
Bảng phụ , SGK, thước kẻ.
III: Tiến trình dạy học:
1. Kiểm tra bài cũ:
Phát biểu định lí thuận, đảo về tính chất đường trung trực của đoạn thẳng.
Sữa bài 4 SGK/76.
2. Các hoạt động trên lớp:
Hoạt động của thầy
Hoạt động của trò
Ghi bảng
Hoạt động 1: Luyện tập.
Bài 50 SGK/77:
Bài 48 SGK/77:
GV: Nêu cách vẽ L đối xứng với M qua xy.
GV: IM bằng đoạn nào ? Tại sao?
GV: Nếu I ¹ P thì IL + IN như thế nào so với LN?
Còn I º P thì sao ?
GV: Vậy IM + IN nhỏ nhất khi nào?
Bài 50 SGK/77:
HS : Đọc đề bài toán.
Một HS trả lời miệng.
Bài 48 SGK/77:
HS : đọc đề bài toán.
HS: IM+IN nhỏ nhất khi IºP
Bài 50 SGK/77:
Địa điểm xây dựng trạm y tế là giao của đường trung trực nối hai điểm dân cư với cạnh đường cao tốc.
Bài 48 SGK/77:
Có : IM = IL (vì I nằm trên trung trực của ML)
Nếu I ¹ P thì : IL + IN > LN (BĐT tam giác)
Hay IM + IN > LN
Nếu I º P thì 
IL + IN = PL + PN = LN
Hay IM + IN = LN
Vậy IM + IN ³ LN
3. Hướng dẫn về nhà:
Xem lại các bài tập đã giải
Học lại 2 định lí của bài
Làm bài tập 49, 51
Xem trước bài 8 : Tính chất ba đường trung trực của tam giác.
Tiết 61
§8	TÍNH CHẤT BA ĐƯỜNG TRUNG TRỰC CỦA
	MỘT TAM GIÁC	
I. Mục tiêu:
Biết khái niệm đường trung trực của một tam giác và chỉ rõ mỗi tam giác có ba đường trung trực.
Biết cách dùng thước kẻ và compa vẽ ba đường trung trực của tam giác.
Chứng minh được tính chất: “Trong 1 tam giác cân, đường trung trực của cạnh đáy đồng thời là đường trung tuyến ứng với cạnh đáy.
Biết khái niệm đường tròn ngoại tiếp tam giác.
II. Chuẩn bị.
Bảng phụ , SGK, thước kẻ.
III: Tiến trình dạy học:
1. Các hoạt động trên lớp:
Hoạt động của thầy
Hoạt động của trò
Ghi bảng
Hoạt động 1: Đường trung trực của tam giác.
GV giới thiệu đường trung trực của tam giác như SGK. Cho HS vẽ tam giác cân và vẽ đường trung trực ứng với cạnh đáy=>Nhận xét.
HS xem SGK.
Lên bảng vẽ tam giác cân, trung trực ứng với cạnh đáy.
I) Đường trung trực của tam giác:
ĐN: SGK/78
Nhận xét: trong một tam giác cân, đường trung trực ứng với cạnh đáy đồng thời là đường trung tuyến ứng với cạnh đáy.
Hoạt động 2: Tính chất ba đường trung trực của tam giác.
GV cho HS đọc định lí, sau đó hướng dẫn HS chứng minh.
HS làm theo GV hướng dẫn.
II) Tính chất ba đường trung trực của tam giác:
Định lí: Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều 3 đỉnh của tam giác đó.
Hoạt động 3: Củng cố.
GV cho HS nhắc lại định lí 3 đường trung trực của một tam giác.
Bài 52 SGK/79:
Chứng minh định lí: Nếu tam giác có một đường trung tuyến đồng thời là đường trung trực ứng với cùng một cạnh thì tam giác đó là tam giác cân.
Bài 55 SGK/80:
Cho hình. Cmr: ba điểm D, B, C thẳng hàng.
Bài 52 SGK/79:
Ta có: AM là trung tuyến đồng thời là đường trung trực nên AB=AC
=> ABC cân tại A.
Bài 55 SGK/80:
Ta có: DK là trung trực của AC.
=> DA=DC
=> ADC cân tại D
=>=1800-2 (1)
Ta có: DI: trung trực của AB
=>DB=DA
=>ADB cân tại D
=> =1800-2 (2)
(1), (2)=>+=1800-2+1800-2
=3600-2(+)
=3600-2.900
=1800
=> B, D, C thẳng hàng.
2. Hướng dẫn về nhà:
Học bài, làm bài tập/80.
Chuẩn bị bài 9: Tính chất ba đường cao của tam giác.
Tiết 62
§	TÍNH CHẤT BA ĐƯỜNG CAO CỦA TAM GIÁC
I. Mục tiêu:
Biết khái niệm đương cao của tam giác và thấy mỗi tam giác có ba đường cao.
Nhận biết ba đường cao của tam giác luôn đi qua một điểm và khái niệm trực tâm.
Biết tổng kết các kiến thức về các loại đường đồng quy của một tam giác cân.
II. Chuẩn bị.
Bảng phụ , SGK, thước kẻ.
III: Tiến trình dạy học:
1. Các hoạt động trên lớp:
Hoạt động của thầy
Hoạt động của trò
Ghi bảng
Hoạt động 1: Đường cao của tam giác.
GV giới thiệu đường cao của tam giác như SGK.
I) Đường cao của tam giác:
ĐN: Trong một tam giác, đoạn vuông góc kẻ từ đỉnh đến cạnh đối diện gọi là đường cao của tam giác.
Hoạt động 2: Tính chất ba đường cao của tam giác.
II) Tính chất ba đường cao của tam giác:
Định lí: Ba đường cao của tam giác cùng đi qua một điểm.
H: trực tâm của ABC
Hoạt động 3: Đường cao, trung tuyến, trung trực, phân giác của tam giác.
GV giới thiệu các tính chất SGK sau đó cho HS gạch dưới và học SGK.
Hoạt động 4: Củng cố.
Bài 62 SGK/83:
Cmr: một tam giác có hai đường cao bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra tam giác có ba đường cao bằng nhau thì tam giác đó là tam giác đều.
Bài 62 SGK/83:
Bài 62 SGK/83:
Xét AMC vuông tại M và ABN vuông tại N có:
MC=BN (gt)
: góc chung.
=> AMC=ANB (ch-gn)
=>AC=AB (2 cạnh tương ứng)
=> ABC cân tại A (1)
chứng minh tương tự ta có CNB=CKA (dh-gn)
=>CB=CA (2)
Từ (1), (2) => ABC đều.
3. Hướng dẫn về nhà:
Học bài, làm bài tập SGK/83.

Tài liệu đính kèm:

  • docHinh 7.doc