1. MỤC TIÊU
a. Kiến thức: Học sinh được làm một số bài tập về ba trường hợp bằng nhau của tam giác.
b. Kĩ năng: Thông qua bài tập rèn kĩ năng vẽ hình, chứng minh hai tam giác bằng nhau. Rèn tư duy suy luận, lôgic, kĩ năng sử dụng các trường hợp bằng nhau một cách chính xác.
c.Thái độ: Có ý thức tự giác, tích cực học tập nghiên cứu sgk. Yêu thích môn toán
Ngày soạn: Ngày dạy 7E :................................. 7QS:. Tiết 33: LUYỆN TẬP (TIẾT 1) (VỀ BA TRƯỜNG HỢP BẰNG NHAU CỦA HAI TAM GIÁC) 1. MỤC TIÊU a. Kiến thức: Học sinh được làm một số bài tập về ba trường hợp bằng nhau của tam giác. b. Kĩ năng: Thông qua bài tập rèn kĩ năng vẽ hình, chứng minh hai tam giác bằng nhau. Rèn tư duy suy luận, lôgic, kĩ năng sử dụng các trường hợp bằng nhau một cách chính xác. c.Thái độ: Có ý thức tự giác, tích cực học tập nghiên cứu sgk. Yêu thích môn toán 2. CHUẨN BỊ a. Thầy: Giáo án: sgv, sgk, sbt; Đồ dùng dạy học: Thước thẳng, compa b. Trò: Học bài cũ: Các trường hợp bằng nhau của tam giác và làm bài tập đã giao Đồ dùng học tập: Thước thẳng, compa 3. TIẾN TRÌNH BÀI DẠY * Ổn định tổ chức: Kiểm tra sĩ số: 7E............................;7QS....... a. Kiểm tra bài cũ ( Miệng - 5') * Câu hỏi: Trong các câu sau. Câu nào đúng, câu nào sai: Nếu hai tam giác ABC và DE F có: a. AB = DF BC = E F AC = DE ABC = DE F (c.c.c) b. AB = DF AC = DE ; ABC = DE F (c.g.c) c. BC = EF ABC = DE F (g.c.g) * Đáp án: Trường hợp 1 và 3 là sai Trường hợp 2 đúng. Giáo viên lưu ý cho học sinh khi xét sự bằng nhau của hai tam giác cần chú ý đến sự tương ứng của cạnh, góc. * Đặt vấn đề (1'): Chúng ta đã học xong 3 trường hợp bằng nhau của tam giác đó là trường hợp bằng nhau cạnh - cạnh - cạnh, cạnh - góc - cạnh, góc - cạnh - góc . Hôm nay chúng ta đi luyện tập về các trường hợp đó . Đồng thời rèn luyện kỹ năng vẽ hình và trình bày lời giải. b. Bài mới Hoạt động của thầy trò Học sinh ghi ?Tb Lên bảng ghi giải thiết và kết luận của bài toán Bài 36 (Sgk - 123) (10') ?K Để chứng minh cho AC = BD ta cần chứng minh cho hai tam giác nào bằng nhau? Gt OA = OB; Kl AC = BD Hs OAC = OBD ?K Hai tam giác trên đã có yếu tố nào bằng nhau? Cần chứng minh thêm yếu tố nào khác? Hs ; OA = OB; chung. Không cần thêm điều kiện Gv Giáo viên chốt, ghi bảng Chứng minh Xét OAC và OBD có: chung OA = OB (gt) OAC = OBD (g.c.g) (gt) AC = BD (đpcm) Gv Yêu cầu h/s nghiên cứu bài 54 (SBT/104) Bài 54 (SBT - 104) (14') ?Tb Bài toán cho biết gì và yêu cầu gì? GT ABC, AB = AC, AD = AE D ÎAB, E Î AC BE Ç CD = { 0} KL A D C B E 2 1 2 1 1 1 O a. BE = CD b. BOD = COE ?K Lên bảng vẽ hình và ghi giả thiết, kết luận của bài toán Hs Cả lớp làm vào vở ?K Muốn chứng minh BE = CD ta phải chứng minh điều gì? Hs Chứng minh BE = CD ta đi chứng minh ABE = ACD Chứng minh a. Xét ABE và ACD có : ? Một em lên bảng hãy chứng minh: ABE = ACD AB = AC (gt) chung ABE = ACD (c.g.c) AD = AE (gt) Hs Cả lớp chứng minh vào vở Suy ra : BE = CD ( Cặp cạnh tương ứng) ?Tb BOD và COE đã có yếu tố nào bằng nhau b. Vì ABE = ACD ( câu a) Suy ra ( 2 góc tương ứng) (1) ( 2 góc tương ứng) Hs Có Ta lại có : = 1800 ( 2 góc kề bù) = 1800 ( 2 góc kề bù) ?K Cần chứng minh thêm yếu tố nào bằng nhau nữa thì kết luận được BOD = COE Suy ra : (2) Mặt khác theo gt ta có : AB = AC, AD = AE Hs Cần chứng minh: BD = CE và Nên AB AD = AC AE Hay BD = CE (3) ?K Hãy chứng minh BD = CE Từ (1), (2), (3) suy ra BOD = COE (g.c.g) ?K Hãy chứng minh Gv Yêu cầu học sinh nghiên cứu bài 34 (SBT - 102) A D B C Bài 34 (SBT- 102) (10') ?Tb Bài toán cho biết gì? Yêu cầu chúng ta làm gì? Hs Cho tam giác ABC Yêu cầu: Vẽ cung tròn (A; BC) và cung tròn (C; BA) chúng cắt nhau ở D (B, D nằm khác phía đối với AC) Chứng minh: AD //BC GT ABC Cung tròn (A;BC) cắt cung tròn(C;AB) tại D (B, D khác phía với AC) KL AD // BC ?K Nêu giả thiết, kết luận của bài toán. Chứng minh ?K Để chứng minh AD //BC ta cần chỉ ra điều gì? Xét ADC và CBA có: AD = CB (gt) Hs Để chứng minh AD//BC cần chỉ ra AD và BC hợp với cát tuyến AC hai góc so le trong bằng nhau. Qua chứng minh hai tam giác bằng nhau. DC = AB (gt) ADC = CBA (c.c.c) AC cạnh chung (Hai góc tương ứng) và ở vị trí so le trong. Do đó AD // BC (Theo dấu hiệu nhận biết 2 đường thẳng song song) ?K Hãy chứng minh AD //BC c. Củng cố (1') ?Tb Nhắc lại các trường hợp bằng nhau của hai tam giác? Muốn c/m hai đoạn thẳng, hai góc bằng nhau ta làm như thế nào? d. Hướng dẫn về nhà (4') - Tiếp tục ôn tập lí thuyết về ba trường hợp bằng nhau của hai tam giác - Xem lại các bài tập đã chữa - Làm bài tập: 41, 42, 43, (Sgk - 124) Bài 54, 55, 56 (SBT - 104) - Hướng dẫn bài 41 (Sgk - 124) Để chứng minh ID = IE = IF ta chứng minh: BID = BIE và CIE = IIF - Giờ sau: Luyện tập.
Tài liệu đính kèm: