A. Mục tiêu:
- Chứng minh được hai định lí về tính chất đặc trưng của đường trung trực của một đoạn thẳng dưới sự hướng dẫn của giáo viên.
- Biết cách vẽ một trung trực của đoạn thẳng và trung điểm của đoạn thẳng như một ứng dụng của hai định lí trên.
- Biết dùng định lí để chứng minh các định lí và giải bài tập.
B. Chuẩn bị:
- Thước thẳng, com pa, một mảnh giấy.
C. Các hoạt động dạy học:
I. Tổ chức lớp: (1')
II. Kiểm tra bài cũ: (4')
III. Tiến trình bài giảng:
Tiết 60. Ngày dạy: 7/4/2011 TÍNH CHẤT BA ĐƯỜNG TRUNG TRỰC A. Mục tiêu: - Chứng minh được hai định lí về tính chất đặc trưng của đường trung trực của một đoạn thẳng dưới sự hướng dẫn của giáo viên. - Biết cách vẽ một trung trực của đoạn thẳng và trung điểm của đoạn thẳng như một ứng dụng của hai định lí trên. - Biết dùng định lí để chứng minh các định lí và giải bài tập. B. Chuẩn bị: - Thước thẳng, com pa, một mảnh giấy. C. Các hoạt động dạy học: I. Tổ chức lớp: (1') II. Kiểm tra bài cũ: (4') III. Tiến trình bài giảng: Hoạt động của thày, trò Ghi bảng - Giáo viên hướng dẫn học sinh gấp giấy - Học sinh thực hiện theo - Lấy M trên trung trực của AB. Hãy so sánh MA, MB qua gấp giấy. - Học sinh: MA = MB ? Hãy phát biểu nhận xét qua kết quả đó. - Học sinh: điểm nằm trên trung trực của một đoạn thẳng thì cách đều 2 đầu mút của đoạnn thẳng đó. - Giáo viên: đó chính là định lí thuận. - Giáo viên vẽ hình nhanh. - Học sinh ghi GT, KL - Sau đó học sinh chứng minh . M thuộc AB . M không thuộc AB (MIA = MIB) Xét điểm M với MA = MB, vậy M có thuộc trung trực AB không. - Học sinh dự đoán: có - Đó chính là nội dung định lí. - Học sinh phát biểu hoàn chỉnh. - Giáo viên phát biểu lại. - Học sinh ghi GT, KL của định lí. - Gc hướng dẫn học sinh chứng minh định lí . M thuộc AB . M không thuộc AB ? d là trung trực của AB thì nó thoả mãn điều kiện gì (2 đk) học sinh biết cần chứng minh MI AB - Yêu cầu học sinh chứng minh. - Giáo viên hươớng dẫn vẽ trung trực của đoạn MN dùng thước và com pa. - Giáo viên lưu ý: + Vẽ cung tròn có bán kính lớn hơn MN/2 + Đây là 1 phương pháp vẽ trung trực đoạn thẳng dùng thước và com pa. IV. Củng cố: (2') - Cách vẽ trung trực - Định lí thuận, đảo - Phương pháp chứng minh 1 đường thẳng là trung trực. V. Hướng dẫn học ở nhà:(4') - Làm bài tập 44, 45, 46 (tr76-SGK) HD 46: ta chỉ ra A, D, E cùng thuộc trung trực của BC 1. Định lí về tính chất của các điểm thuộc đường trung trực. (10') a) Thực hành b) Định lí 1 (đl thuận) SGK GT Md, d là trung trực của AB (IA = IB, MI AB) KL MA = MB 2. Định lí 2 (đảo của đl 1) a) Định lí : SGK GT MA = MB KL M thuộc trung trực của AB Chứng minh: . TH 1: MAB, vì MA = MB nên M là trung điểm của AB M thuộc trung trực AB . TH 2: MAB, gọi I là trung điểm của AB AMI = BMI vì MA = MB MI chung AI = IB Mà hay MI AB, mà AI = IB MI là trung trực của AB. b) Nhận xét: SGK 3. Ứng dụng (5') PQ là trung trực của MN H A d C
Tài liệu đính kèm: