PHẦN I: ĐỀ BÀI
1. Chứng minh căn 7 là số vô tỉ
2. a) Chứng minh : (ac + bd)2 + (ad bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki : (ac + bd)2 (a2 + b2)(c2 + d2)
PHẦN I: ĐỀ BÀI 1. Chứng minh là số vô tỉ. 2. a) Chứng minh : (ac + bd)2 + (ad bc)2 = (a2 + b2)(c2 + d2) b) Chứng minh bất dẳng thức Bunhiacôpxki : (ac + bd)2 (a2 + b2)(c2 + d2) 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức : S = x2 + y2. 4. a) Cho a 0, b 0. Chứng minh bất đẳng thức Cauchy : . b) Cho a, b, c > 0. Chứng minh rằng : c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab. 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3. 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b. 7. Cho a, b, c là các số dương. Chứng minh : a3 + b3 + abc ab(a + b + c) 8. Tìm liên hệ giữa các số a và b biết rằng : 9. a) Chứng minh bất đẳng thức (a + 1)2 4a b) Cho a, b, c > 0 và abc = 1. Chứng minh : (a + 1)(b + 1)(c + 1) 8 10. Chứng minh các bất đẳng thức : a) (a + b)2 2(a2 + b2) b) (a + b + c)2 3(a2 + b2 + c2) 11. Tìm các giá trị của x sao cho : a) | 2x 3 | = | 1 x | b) x2 4x 5 c) 2x(2x 1) 2x 1. 12. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d) 13. Cho biểu thức M = a2 + ab + b2 3a 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó. 14. Cho biểu thức P = x2 + xy + y2 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0. 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau : x2 + 4y2 + z2 2a + 8y 6z + 15 = 0 16. Tìm giá trị lớn nhất của biểu thức : 17. So sánh các số thực sau (không dùng máy tính) : a) b) c) d) 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn nhng nhỏ hơn 19. Giải phương trình : . 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4. 21. Cho . Hãy so sánh S và . 22. Chứng minh rằng : Nếu số tự nhiên a không phải là số chính phương thì là số vô tỉ. 23. Cho các số x và y cùng dấu. Chứng minh rằng : a) b) c) . 24. Chứng minh rằng các số sau là số vô tỉ : a) b) với m, n là các số hữu tỉ, n 0. 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không ? 26. Cho các số x và y khác 0. Chứng minh rằng : . 27. Cho các số x, y, z dơng. Chứng minh rằng : . 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ. 29. Chứng minh các bất đẳng thức : a) (a + b)2 2(a2 + b2) b) (a + b + c)2 3(a2 + b2 + c2) c) (a1 + a2 + .. + an)2 n(a12 + a22 + .. + an2). 30. Cho a3 + b3 = 2. Chứng minh rằng a + b 2. 31. Chứng minh rằng : . 32. Tìm giá trị lớn nhất của biểu thức : . 33. Tìm giá trị nhỏ nhất của : với x, y, z > 0. 34. Tìm giá trị nhỏ nhất của : A = x2 + y2 biết x + y = 4. 35. Tìm giá trị lớn nhất của : A = xyz(x + y)(y + z)(z + x) với x, y, z 0 ; x + y + z = 1. 36. Xét xem các số a và b có thể là số vô tỉ không nếu : a) ab và là số vô tỉ. b) a + b và là số hữu tỉ (a + b 0) c) a + b, a2 và b2 là số hữu tỉ (a + b 0) 37. Cho a, b, c > 0. Chứng minh : a3 + b3 + abc ab(a + b + c) 38. Cho a, b, c, d > 0. Chứng minh : 39. Chứng minh rằng bằng hoặc 40. Cho số nguyên dương a. Xét các số có dạng : a + 15 ; a + 30 ; a + 45 ; ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96. 41. Tìm các giá trị của x để các biểu thức sau có nghĩa : 42. a) Chứng minh rằng : | A + B | | A | + | B | . Dấu = ” xảy ra khi nào ? b) Tìm giá trị nhỏ nhất của biểu thức sau : . c) Giải phương trình : 43. Giải phương trình : . 44. Tìm các giá trị của x để các biểu thức sau có nghĩa : 45. Giải phương trình : 46. Tìm giá trị nhỏ nhất của biểu thức : . 47. Tìm giá trị lớn nhất của biểu thức : 48. So sánh : a) ; b) c) (n là số nguyên dương) 49. Với giá trị nào của x, biểu thức sau đạt giá trị nhỏ nhất : . 50. Tính : (n > 1) 51. Rút gọn biểu thức : . 52. Tìm các số x, y, z thỏa mãn đẳng thức : 53. Tìm giá trị nhỏ nhất của biểu thức : . 54. Giải các phương trình sau : 55. Cho hai số thực x và y thỏa mãn các điều kiện : xy = 1 và x > y. CMR: . 56. Rút gọn các biểu thức : 57. Chứng minh rằng . 58. Rút gọn các biểu thức : .59. So sánh : 60. Cho biểu thức : Tìm tập xác định của biểu thức A. Rút gọn biểu thức A. 61. Rút gọn các biểu thức sau : 62. Cho a + b + c = 0 ; a, b, c 0. Chứng minh đẳng thức : 63. Giải bất phương trình : . 64. Tìm x sao cho : . 65. Tìm giá trị nhỏ nhất, giá trị lớn nhất của A = x2 + y2 , biết rằng : x2(x2 + 2y2 3) + (y2 2)2 = 1 (1) 66. Tìm x để biểu thức có nghĩa: . 67. Cho biểu thức : . a) Tìm giá trị của x để biểu thức A có nghĩa. b) Rút gọn biểu thức A. c) Tìm giá trị của x để A < 2. 68. Tìm 20 chữ số thập phân đầu tiên của số : (20 chữ số 9) 69. Tìm giá trị nhỏ nhất, giá trị lớn nhất của : A = | x - | + | y 1 | với | x | + | y | = 5 70. Tìm giá trị nhỏ nhất của A = x4 + y4 + z4 biết rằng xy + yz + zx = 1 71. Trong hai số : (n là số nguyên dương), số nào lớn hơn ? 72. Cho biểu thức . Tính giá trị của A theo hai cách. 73. Tính : 74. Chứng minh các số sau là số vô tỉ : 75. Hãy so sánh hai số : ; 76. So sánh và số 0. 77. Rút gọn biểu thức : . 78. Cho . Hãy biểu diễn P dưới dạng tổng của 3 căn thức bậc hai 79. Tính giá trị của biểu thức x2 + y2 biết rằng : . 80. Tìm giá trị nhỏ nhất và lớn nhất của : . 81. Tìm giá trị lớn nhất của : với a, b > 0 và a + b 1. 82. CMR trong các số có ít nhất hai số dương (a, b, c, d > 0). 83. Rút gọn biểu thức : . 84. Cho , trong đó x, y, z > 0. Chứng minh x = y = z. 85. Cho a1, a2, , an > 0 và a1a2aan = 1. Chứng minh: (1 + a1)(1 + a2)(1 + an) 2n. 86. Chứng minh : (a, b 0). 87. Chứng minh rằng nếu các đoạn thẳng có độ dài a, b, c lập được thành một tam giác thì các đoạn thẳng có độ dài cũng lập được thành một tam giác. 88. Rút gọn : a) b) 89. Chứng minh rằng với mọi số thực a, ta đều có : . Khi nào có đẳng thức ? 90. Tính : bằng hai cách. 91. So sánh : a) 92. Tính : . 93. Giải phương trình : . 94. Chứng minh rằng ta luôn có : ; "n Î Z+ 95. Chứng minh rằng nếu a, b > 0 thì . 96. Rút gọn biểu thức : A = . 97. Chứng minh các đẳng thức sau : (a, b > 0 ; a b) (a > 0). 98. Tính : . . 99. So sánh : 100. Cho hằng đẳng thức : (a, b > 0 và a2 b > 0). Áp dụng kết quả để rút gọn : 101. Xác định giá trị các biểu thức sau : với (a > 1 ; b > 1) với . 102. Cho biểu thức a) Tìm tất cả các giá trị của x để P(x) xác định. Rút gọn P(x). b) Chứng minh rằng nếu x > 1 thì P(x).P(- x) < 0. 103. Cho biểu thức . a) Rút gọn biểu thức A. b) Tìm các số nguyên x để biểu thức A là một số nguyên. 104. Tìm giá trị lớn nhất (nếu có) hoặc giá trị nhỏ nhất (nếu có) của các biểu thức sau: 105. Rút gọn biểu thức : , bằng ba cách ? 106. Rút gọn các biểu thức sau : . 107. Chứng minh các hằng đẳng thức với b 0 ; a a) b) 108. Rút gọn biểu thức : 109. Tìm x và y sao cho : 110. Chứng minh bất đẳng thức : . 111. Cho a, b, c > 0. Chứng minh : . 112. Cho a, b, c > 0 ; a + b + c = 1. Chứng minh : . 113. CM : với a, b, c, d > 0. 114. Tìm giá trị nhỏ nhất của : . 115. Tìm giá trị nhỏ nhất của : . 116. Tìm giá trị nhỏ nhất, giá trị lớn nhất của A = 2x + 3y biết 2x2 + 3y2 = 5. 117. Tìm giá trị lớn nhất của A = x + . 118. Giải phương trình : 119. Giải phương trình : 120. Giải phương trình : 121. Giải phương trình : 122. Chứng minh các số sau là số vô tỉ : 123. Chứng minh . 124. Chứng minh bất đẳng thức sau bằng phương pháp hình học : với a, b, c > 0. 125. Chứng minh với a, b, c, d > 0. 126. Chứng minh rằng nếu các đoạn thẳng có độ dài a, b, c lập đợc thành một tam giác thì các đoạn thẳng có độ dài cũng lập đợc thành một tam giác. 127. Chứng minh với a, b 0. 128. Chứng minh với a, b, c > 0. 129. Cho . Chứng minh rằng x2 + y2 = 1. 130. Tìm giá trị nhỏ nhất của 131. Tìm GTNN, GTLN của . 132. Tìm giá trị nhỏ nhất của 133. Tìm giá trị nhỏ nhất của . 134. Tìm GTNN, GTLN của : 135. Tìm GTNN của A = x + y biết x, y > 0 thỏa mãn (a và b là hằng số dương). 136. Tìm GTNN của A = (x + y)(x + z) với x, y, z > 0 , xyz(x + y + z) = 1. 137. Tìm GTNN của với x, y, z > 0 , x + y + z = 1. 138. Tìm GTNN của biết x, y, z > 0 , . 139. Tìm giá trị lớn nhất của : a) với a, b > 0 , a + b 1 b) với a, b, c, d > 0 và a + b + c + d = 1. 140. Tìm giá trị nhỏ nhất của A = 3x + 3y với x + y = 4. 141. Tìm GTNN của với b + c a + d ; b, c > 0 ; a, d 0. 142. Giải các phương trình sau : . 143. Rút gọn biểu thức : . 144. Chứng minh rằng, "n Î Z+ , ta luôn có : . 145. Trục căn thức ở mẫu : . 146. Tính : 147. Cho . Chứng minh rằng a là số tự nhiên. 148. Cho . b có phải là số tự nhiên không ? 149. Giải các phương trình sau : 150. Tính giá trị của biểu thức : 151. Rút gọn : . 152. Cho biểu thức : a) Rút gọn P. b) P có phải là số hữu tỉ không ? 153. Tính : . 154. Chứng minh : . 155. Cho . Hãy tính giá trị của biểu thức: A = (a5 + 2a4 17a3 a2 + 18a 17)2000. 156. Chứng minh : (a 3) 157. Chứng minh : (x 0) 158. Tìm giá trị lớn nhất của , biết x + y = 4. 159. Tính giá trị của biểu thức sau với . 160. Chứng minh các đẳng thức sau : 161. Chứng minh các bất đẳng thức sau : 162. Chứng minh rằng : . Từ đó suy ra: 163. Trục căn thức ở mẫu : . 164. Cho . Tính A = 5x2 + 6xy + 5y2. 165. Chứng minh bất đẳng thức sau : . 166. Tính giá trị của biểu thức : với . 167. Giải phương trình : . 168. Giải bất các pt : a) . 169. Rút gọn các biểu thức sau : 170. Tìm GTNN và GTLN của biểu thức . 171. Tìm giá trị nhỏ nhất của với 0 < x < 1. 172. Tìm GTLN của : biết x + y = 4 ; b) 173. Cho . So sánh a với b, số nào lớn hơn ? 174. Tìm GTNN, GTLN của : . 175. Tìm giá trị lớn nhất của . 176. Tìm giá trị lớn nhất của A = | x y | biết x2 + 4y2 = 1. 177. Tìm GTNN, GTLN của A = x3 + y3 biết x, y 0 ; x2 + y2 = 1. 178. Tìm GTNN, GTLN của biết . 179. Giải phương trình : . 180. Giải phương trình : . 181. CMR, "n Î Z+ , ta có : . 182. Cho . Hãy so sánh A và 1,999. 183. Cho 3 số x, y và là số hữu tỉ. Chứng minh rằng mỗi số đều là số hữu tỉ 184. Cho . CMR : a, b là các số hữu tỉ. 185. Rút gọn biểu thức : . (a > 0 ; a 1) 186. Chứng minh : . (a > 0 ; a 1) 187. Rút gọn : (0 < x < 2) 188. Rút gọn : 189. Giải bất phương trình : (a 0) 190. Cho a) Rút gọn biểu thức A. b) Tính giá trị của A với a = 9. c) Với giá trị nào của a thì | A | = A. 191. Cho biểu thức : . a) Rút gọn biểu thức B. b) Tính giá trị của B nếu . c) So sánh B với -1. 192. Cho a) Rút gọn biểu thức A. b) Tìm b biết | A | = -A. c) Tính giá trị của A khi . 193. Cho biểu thức a) Rút gọn biểu thức A. b) Tìm giá trị của A nếu . c) Tìm giá trị của a để . 194. ... ơng với : k2 k + < x < k2 + k + . Rõ ràng bất phơng trình này có 2k nghiệm tự nhiên là : k2 k + 1 ; k2 k + 2 ; ; k2 + k. Do đó : . 223. Giải tơng tự bài 24. a) 1 < an < 2. Vậy [ an ] = 1. b) 2 an 3. Vậy [ an ] = 2. c) Ta thấy : 442 = 1936 < 1996 < 2025 = 452, còn 462 = 2116. a1 = = 44 < a1 < 45. Hãy chứng tỏ với n 2 thì 45 < an < 46. Nh vậy với n = 1 thì [ an ] = 44, với n 2 thì [ an ] = 45. 224. Cần tìm số tự nhiên B sao cho B A < B + 1. Làm giảm và làm trội A để đợc hai số tự nhiên liên tiếp. Ta có : (4n + 1)2 < 16n2 + 8n + 3 < (4n + 2)2 Þ 4n + 1 < < 4n + 2 Þ 4n2 + 4n + 1 < 4n2 + < 4n2 + 4n + 2 < 4n2 + 8n + 4 Þ (2n + 1)2 < 4n2 + < (2n + 2)2. Lấy căn bậc hai : 2n + 1 < A < 2n + 2. Vậy [ A ] = 2n + 1. 225. Để chứng minh bài toán, ta chỉ ra số y thỏa mãn hai điều kiện : 0 < y < 0,1 (1). x + y là một số tự nhiên có tận cùng bằng 2 (2). Ta chọn y = . Ta có 0 < < 0,3 nên 0 < y < 0,1. Điều kiện (1) đợc chứng minh. Bây giờ ta chứng minh x + y là một số tự nhiên có tận cùng bằng 2. Ta có : . Xét biểu thức tổng quát Sn = an + bn với a = 5 + 2 , b = 5 - 2. Sn = (5 + 2)n = (5 - 2)n A và b có tổng bằng 10, tích bằng 1 nên chúng là nghiệm của phương trình X2 -10X + 1 = 0, tức là : a2 = 10a 1 (3) ; b2 = 10b 1 (4). Nhân (3) với an , nhân (4) với bn : an+2 = 10an+1 an ; bn+2 = 10bn+1 bn. Suy ra (an+2 + bn+2) = 10(an+1 + bn+1) (an + bn), tức là Sn+2 = 10Sn+1 Sn , hay Sn+2 - Sn+1 (mod 10) Do đó Sn+4 - Sn+2 Sn (mod 10) (5) Ta có S0 = (5 + 2)0 + (5 - 2)0 = 1 + 1 = 2 ; S1 = (5 + 2) + (5 - 2) = 10. Từ công thức (5) ta có S2 , S3 , , Sn là số tự nhiên, và S0 , S4 , S8 , , S100 có tận cùng bằng 2, tức là tổng x + y là một số tự nhiên có tận cùng bằng 2. Điều kiện (2) được chứng minh. Từ (1) và (2) suy ra điều phải chứng minh. 226. Biến đổi . Phần nguyên của nó có chữ số tận cùng bằng 9. (Giải tương tự bài 36) 227. Ta có : Theo cách chia nhóm nh trên, nhóm 1 có 3 số, nhóm 2 có 5 số, nhóm 3 có 7 số, nhóm 4 có 9 số. Các số thuộc nhóm 1 bằng 1, các số thuộc nhóm 2 bằng 2, các số thuộc nhóm 3 bằng 3, các số thuộc nhóm 4 bằng 4. Vậy A = 1.3 + 2.5 + 3.7 + 4.9 = 70 228. a) Xét 0 x 3. Viết A dới dạng : A = 4.. .(3 x). Áp dụng bất đẳng thức Cauchy cho 3 số không âm , , (3 x) ta đợc : ..(3 x) . Do đó A 4 (1) b) Xét x > 3, khi đó A 0 (2). So sánh (1) và (2) ta đi đến kết luận : . 229. a) Lập phơng hai vế, áp dụng hằng đẳng thức (a + b)3 = a3 + b3 + 3ab(a + b), ta đợc : Û x = - 1 ; x = 7 (thỏa) b) Điều kiện : x - 1 (1). Đặt . Khi đó x 2 = y2 ; x + 1 = z2 nên z2 y3 = 3. Phương trình đã cho được đa về hệ : Rút z từ (2) : z = 3 y. Thay vào (3) : y3 y2 + 6y 6 = 0 Û (y 1)(y2 + 6) = 0 Û y = 1 Suy ra z = 2, thỏa mãn (4). Từ đó x = 3, thỏa mãn (1). Kết luận : x = 3. 230. a) Có, chẳng hạn : . b) Không. Giả sử tồn tại các số hữu tỉ dơng a, b mà . Bình phơng hai vế : . Bình phơng 2 vế : 4ab = 2 + (a + b)2 2(a + b) Þ 2(a + b) = 2 + (a + b)2 4ab Vế phải là số hữu tỉ, vế trái là số vô tỉ (vì a + b 0), mâu thuẩn. 231. a) Giả sử là số hữu tỉ (phân số tối giản). Suy ra 5 = . Hãy chứng minh rằng cả m lẫn n đều chia hết cho 5, trái giả thiết là phân số tối giản. b) Giả sử là số hữu tỉ (phân số tối giản). Suy ra : Thay m = 2k (k Î Z) vào (1) : 8k3 = 6n3 + 12kn2 Þ 4k3 = 3n3 + 6kn2. Suy ra 3n3 chia hết cho 2 Þ n3 chia hết cho 2 Þ n chia hết cho 2. Nh vậy m và n cùng chia hết cho 2, trái với giả thiết là phân số tối giản. 232. Cách 1 : Đặt a = x3 , b = y3 , c = z3. Bất đẳng thức cần chứng minh tơng đơng với x3 + y3 + z3 3xyz 0. Ta có hằng đẳng thức : x3 + y3 + z3 3xyz = (x + y + z)[(x y)2 + (y z)2 + (z x)2]. (bài tập sbt) Do a, b, c 0 nên x, y, z 0, do đó x3 + y3 + z3 3xyz 0. Nh vậy : Xảy ra dấu đẳng thức khi và chỉ khi a = b = c. Cách 2 : Trớc hết ta chứng minh bất đẳng thức Cauchy cho bốn số không âm. Ta có : Trong bất đẳng thức , đặt ta đợc : . Chia hai vế cho số dương (trường hợp một trong các số a, b, c bằng 0, bài toán được chứng minh) : . Xảy ra đẳng thức : a = b = c = Û a = b = c = 1 233. Từ giả thiết suy ra : . Áp dụng bất đẳng thức Cauchy cho 3 số dương : . Tơng tự : Nhân từ bốn bất đẳng thức : . 234. Gọi . Áp dụng bất đẳng thức Bunhiacôpxki : (1) Áp dụng bất đẳng thức Cauchy với ba số không âm : (2) Nhân từng vế (1) với (2) : 235. Đặt thì x3 + y3 = 6 (1). Xét hiệu b3 a3 , ta đợc : b3 a3 = 24 (x + y)3 = 24 (x3 + y3) 3xy(x + y) Do (1), ta thay 24 bởi 4(x3 + b3), ta có : b3 a3 = 4(x3 + y3) (x3 + y3) 3xy(x + y) = 3(x3 + y3) 3xy(x + y) = = 3(x + y)(x2 xy + y2 xy) = 3(x + y)(x y)2 > 0 (vì x > y > 0). Vậy b3 > a3 , do đó b > a. 236. a) Bất đẳng thức đúng với n = 1. Với n 2, theo khai triển Newton, ta có : < Dễ dàng chứng minh : = Do đó b) Với n = 2, ta chứng minh (1). Thật vậy, (1) Û Û 32 > 22. Với n 3, ta chứng minh (2). Thật vậy : (3) Theo câu a ta có , mà 3 n nên (3) đợc chứng minh. Do đó (2) đợc chứng minh. 237. Cách 1 : . min A = 2 với x = 0. Cách 2 : Áp dụng bất đẳng thức Cauchy : min A = 2 với x = 0. 238. Với x < 2 thì A 0 (1). Với 2 x 4, xét - A = x2(x 2). Áp dụng bất đẳng thức Cauchy cho ba số không âm : - A 32 Þ A - 32. min A = - 32 với x = 4. 239. Điều kiện : x2 9. max A = với x = . 240. a) Tìm giá trị lớn nhất : Cách 1 : Với 0 x < thì A = x(x2 6) 0. Với x . Ta có x 3 Þ 6 x2 9 Þ 0 x2 6 3. Suy ra x(x2 6) 9. max A = 9 với x = 3. Cách 2 : A = x(x2 9) + 3x. Ta có x 0, x2 9 0, 3x 9, nên A 9. max A = 9 với x = 3 b) Tìm giá trị nhỏ nhất : Cách 1 : A = x3 6x = x3 + (2)3 6x (2)3 = = (x + 2)(x2 - 2x + 8) 6x - 16 = (x + 2)(x2 - 2x + 2) + (x + 2).6 6x - 16 = (x + 2)(x - )2 - 4 - 4. min A = - 4 với x = . Cách 2 : Áp dụng bất đẳng thức Cauchy với 3 số không âm : x3 + 2 + 2 3. = 6x. Suy ra x3 6x - 4. min A = - 4 với x = . 241. Gọi x là cạnh của hình vuông nhỏ, V là thể tích của hình hộp. Cần tìm giá trị lớn nhất của V = x(3 2x)2. Theo bất đẳng thức Cauchy với ba số dơng : 4V = 4x(3 2x)(3 2x) = 8 max V = 2 Û 4x = 3 2x Û x = Thể tích lớn nhất của hình hộp là 2 dm3 khi cạnh hình vuông nhỏ bằng dm. 242. a) Đáp số : 24 ; - 11. b) Đặt . Đáp số : 1 ; 2 ; 10. c) Lập phơng hai vế. Đáp số : 0 ; d) Đặt = y. Giải hệ : x3 + 1 = 2y , y3 + 1 = 2x, đợc (x y)(x2 + xy + y2 + 2) = 0 Û x = y. Đáp số : 1 ; . e) Rút gọn vế trái đợc : . Đáp số : x = 4. g) Đặt . Ta có : a3 + b3 = 2, a3 b3 = 12 2x, do đó vế phải của phương trình đã cho là . Phương trình đã cho trở thành : = . Do a3 + b3 = 2 nên Þ (a b)(a3 + b3) = (a + b)(a3 b3) Do a + b 0 nên : (a b)(a2 ab + b2 = (a b)(a2 + ab + b2). Từ a = b ta đợc x = 6. Từ ab = 0 ta đợc x = 7 ; x = 5. h) Đặt . Ta có : a2 + b2 + ab = 1 (1) ; a3 b3 = 2 (2). Từ (1) và (2) : a b = 2. Thay b = a 2 vào (1) ta đợc a = 1. Đáp số : x = 0. i) Cách 1 : x = - 2 nghiệm đúng phương trình. Với x + 2 0, chia hai vế cho . Đặt . Giải hệ a3 + b3 = 2, a + b = - 1. Hệ này vô nghiệm. Cách 2 : Đặt = y. Chuyển vế : . Lập phương hai vế ta được : y3 1 + y3 + 1 + 3..(- y) = - y3 Û y3 = y. . Với y = 0, có nghiệm x = - 2. Với y 0, có y2 = . Lập phơng : y6 = y6 1. Vô nghiệm. Cách 3 : Ta thấy x = - 2 nghiệm đúng phương trình. Với x - 2, phơng trình vô nghiệm, xem bảng dưới đây : x Vế trái x < - 2 x > - x < - 1 > - 1 < 0 > 0 < 1 > 1 < 0 > 0 k) Đặt 1 + x = a , 1 x = b. Ta có : a + b = 2 (1), = 3 (2) Theo bất đẳng thức Cauchy , ta có : . Phải xảy ra dấu đẳng thức, tức là : a = b = 1. Do đó x = 0. l) Đặt thì m4 + n4 = a + b 2x. Phương trình đã cho trở thành : m + n = . Nâng lên lũy thừa bậc bốn hai vế rồi thu gọn : 2mn(2m2 + 3mn + 2n2) = 0. Suy ra m = 0 hoặc n = 0, còn nếu m, n > 0 thì 2m2 + 3mn + 2n2 > 0. Do đó x = a , x = b. Ta phải có x a , x b để các căn thức có nghĩa. Giả sử a b thì nghiệm của phương trình đã cho là x = a. 243. Điều kiện để biểu thức có nghĩa : a2 + b2 0 (a và b không đồng thời bằng 0). Đặt , ta có : = . Vậy : (với a2 + b2 0). 244. Do A là tổng của hai biểu thức dương nên ta có thể áp dụng bất đẳng thức Cauchy : = . Đẳng thức xảy ra khi : . Ta có A 2, đẳng thức xảy ra khi x = 0. Vậy : min A = 2 Û x = 0. Vì 1 + là nghiệm của phương trình 3x3 + ax2 + bx + 12 = 0, nên Ta có :3(1 + )3 + a(1 + )2 + b(1 + ) + 12 = 0. Sau khi thực hiện các phép biến đổi, ta đợc biểu thức thu gọn : (4a + b + 42) + (2a + b + 18) = 0. Vì a, b Î Z nên p = 4a + b + 42 Î Z và q = 2a + b + 18 Î Z. Ta phải tìm các số nguyên a, b sao cho p + q = 0. Nếu q 0 thì = - , vô lí. Do đó q = 0 và từ p + q = 0 ta suy ra p = 0. Vậy 1 + là một nghiệm của phương trình 3x3 + ax2 + bx + 12 = 0 khi và chỉ khi : . Suy ra a = - 12 ; b = 6. 246. Giả sử là số hữu tỉ ( là phân số tối giản ). Suy ra : 3 = . Hãy chứng minh cả p và q cùng chia hết cho 3, trái với giả thiết là phân số tối giản. 247. a) Ta có : . Do đó : . b) . 248. Áp dụng hằng đẳng thức (a + b)3 = a3 + b3 + 3ab(a + b), ta có : Û a3 6a 40 = 0 Û (a 4)(a2 + 4a + 10) = 0. Vì a2 + 4a + 10 > 0 Þ a = 4. 249. Giải tơng tự bài 21. 250. A = 2 + . 251. Áp dụng : (a + b)3 = a3 + b3 + 3ab(a + b). Từ x = . Suy ra x3 = 12 + 3.3x Û x3 9x 12 = 0. 252. Sử dụng hằng đẳng thức (A B)3 = A3 B3 3AB(A B). Tính x3. Kết quả M = 0 253. a) x1 = - 2 ; x2 = 25. b) Đặt , ta được : Û u = v = - 2 Þ x = 1. c) Đặt : . Kết quả x = 7. 254. Đa biểu thức về dạng : . Áp dụng | A | + | B | = | A + B | min A = 2 Û -1 x 0. 255. Áp dụng bất đẳng thức Cauchy hai lần. 256. Đặt 258. Ta có : = | x a | + | x b | | x a + b x | = b a (a < b). Dấu đẳng thức xảy ra khi (x a)(x b) 0 Û a x b. Vậy min P = b a Û a x b. 259. Vì a + b > c ; b + c > a ; c + a > b. Áp dụng bất đẳng thức Cauchy cho từng cặp số dương Các vế của 3 bất dẳng thức trên đều dương. Nhân 3 bất đẳng thức này theo từng vế ta đợc bất đẳng thức cần chứng minh. Đẳng thức xảy ra khi và chỉ khi a + b c = b + c a = c + a b Û a = b = c (tam giác đều). 260. . 261. 2A = (a b)2 + (b c)2 + (c a)2. Ta có : c a = - (a c) = - [(a b) + (b c)] = - ( + 1 + - 1) = - 2. Do đó : 2A = (+ 1)2 + ( - 1)2 + (-2)2 = 14. Suy ra A = 7. 262. Đa pt về dạng : . 263. Nếu 1 x 2 thì y = 2. 264. Đặt : . 265. Gọi các kích thước của hình chữ nhật là x, y. Với mọi x, y ta có : x2 + y2 2xy. Nhng x2 + y2 = (8)2 = 128, nên xy 64. Do đó : max xy = 64 Û x = y = 8. 266. Với mọi a, b ta luôn có : a2 + b2 2ab. Nhưng a2 + b2 = c2 (định lí Pytago) nên : c2 2ab Û 2c2 a2 +b2 + 2ab Û 2c2 (a + b)2 Û c a + b Û c . Dấu đẳng thức xảy ra khi và chỉ khi a = b. 267. Biến đổi ta được : 268. 2 x - 1 ; 1 x 2. ---------------Hết---------------
Tài liệu đính kèm: