Bài giảng môn Đại số lớp 7 - Ôn về các trường hợp bằng nhau của tam giác

Bài giảng môn Đại số lớp 7 - Ôn về các trường hợp bằng nhau của tam giác

Ôn luyện trường hợp bằng nhau thứ nhất của hai tam giác. Trường hợp cạnh - cạnh - cạnh và cạnh- góc – cạnh

- Vẽ và chứng minh 2 tam giác bằng nhau , suy ra cạnh hoặc góc bằng nhau

 - Rèn kỹ năng vẽ hình, suy luận, trình bày

 

doc 69 trang Người đăng linhlam94 Lượt xem 741Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng môn Đại số lớp 7 - Ôn về các trường hợp bằng nhau của tam giác", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Trường THCS ........... Kế hoạch dạy thêm
 Môn toán lớp 7
 Học kỳ II năm học 2011 – 2012
STT
Buổi
Số
 tiết
Ngày dạy
Tên bài dạy
Điều chỉnh
1
1
3
Ôn về các trường hợp bằng nhau củaTam giác
2
2
3
Một số bài toán về đại lượng tỉ lệ
 nghịch, tỉ lệ thuận.
3
3
3
Ôn về các trường hợp bằng nhau củaTam giác ( tiếp )
4
4
3
Ôn định lý Pitago - trường hợp bằng nhau của hai tam giác vuông
5
5
3
Quan hệ giữa các yếu tố của tam giác. Các đường đồng quy trong tam giác 
6
6
3
Quan hệ góc và cạnh đối diện trong một tam giác.
7
7
3
Ôn về biểu thức đại số
8
8
3
Ôn về các đường đồng quy của tam giác
9
9
3
Ôn về cộng trừ đa thức một biến
10
10
3
Ôn về các đường đồng quy của tam giác ( tiếp )
11
11
3
Ôn về đa thức, nhiệm của một đa thức
12
12
3
Ôn về các đường đồng quy của tam giác ( tiếp )
13
13
3
Ôn tập chương : Biểu thức đại số
14
14
3
Ôn tập chương 3 hình học “Quan hệ giữa các yếu tố của tam giác. Các đường đồng quy của tam giác ”
15
15
3
Ôn tập học kỳ II
 Vân Đồn, ngày 15 tháng 12 năm 2011
 Giáo viên dạy
Ngày soạn: 20/01/2012
Ngày dạy:
 Buổi 1. Ôn về các Trường hợp bằng nhau của tam giác
I. Mục tiêu:
- Ôn luyện trường hợp bằng nhau thứ nhất của hai tam giác. Trường hợp cạnh - cạnh - cạnh và cạnh- góc – cạnh
- Vẽ và chứng minh 2 tam giác bằng nhau , suy ra cạnh hoặc góc bằng nhau
 - Rèn kỹ năng vẽ hình, suy luận, trình bày
II. Tiến trình lên lớp:
1. Tổ chức lớp ( 1’ )
 7A :
 7B :
2. Bài mới ( 114’ )
Hoạt động của thầy và trò
Ghi bảng
? Nêu các bước vẽ một tam giác khi biết ba cạnh?
? Phát biểu trường hợp bằng nhau cạnh - cạnh - cạnh của hai tam giác?
GV đưa ra hình vẽ bài tập 1.
? Để chứng minh D ABD = D CDB ta làm như thế nào? 
HS lên bảng trình bày.
HS nghiên cứu bài tập 22/ sgk.
HS: Lên bảng thực hiện các bước làm theo hướng dẫn, ở dưới lớp thực hành vẽ vào vở.
? Ta thực hiện các bước nào?
H:- Vẽ góc xOy và tia Am. 
 - Vẽ cung tròn (O; r) cắt Ox tại B, cắt Oy tại C.
 - Vẽ cung tròn (A; r) cắt Am tại D.
 - Vẽ cung tròn (D; BC) cắt (A; r) tại E.
? Qua cách vẽ giải thích tại sao OB = AE? 
OC = AD? BC = ED?
? Muốn chứng minh = ta làm như thế nào?
 HS lên bảng chứng minh DOBC = DAED.
GV đưa ra bài tập 3
Cho hình vẽ sau, hãy chứng minh:
a, DABD = DCDB
b, 
c, AD = BC
? Bài toán cho biết gì? yêu cầu gì?
ị HS lên bảng ghi GT – KL.
? DABD và DCDB có những yếu tố nào bằng nhau?
? Vậy chúng bằng nhau theo trường hợp nào?
ị HS lên bảng trình bày.
HS tự làm các phần còn lại.
GV đưa ra bài tập 4
Cho DABC có <900. Trên nửa mặt phẳng chứa đỉnh C có bờ AB, ta kẻ tia AE sao cho: AE ^ AB; AE = AB. Trên nửa mặt phẳng không chứa điểm B bờ AC, kẻ tia AD sao cho: AD ^ AC; AD = AC. Chứng minh rằng: DABC = DAED.
HS đọc bài toán, len bảng ghi GT – KL.
? Có nhận xét gì về hai tam giác này?
ị HS lên bảng chứng minh.
Dưới lớp làm vào vở, sau đó kiểm tra chéo các bài của nhau.
? Vẽ hình, ghi GT và KL của bài toán.
? Để chứng minh OA = OB ta chứng minh hai tam giác nào bằng nhau?
? Hai DOAH và DOBH có những yếu tố nào bằng nhau? Chọn yếu tố nào? Vì sao?
Một HS lên bảng chứng minh, ở dưới làm bài vào vở và nhận xét.
H: Hoạt động nhóm chứng minh CA = CB và = trong 8’, sau đó GV thu bài các nhóm và nhận xét.
HS đọc yêu cầu của bài.
HS lên bảng thực hiện phần a.
Phần b hoạt động nhóm.
I. Kiến thức cơ bản:
1. Vẽ một tam giác biết ba cạnh:
2. Trường hợp bằng nhau c - c - c:
3. Vẽ một tam giác biết hai cạnh và góc xen giữa:
4. Trường hợp bằng nhau c - g - c:
5. Trường hợp bằng nhau đặc biệt của tam giác vuông:
II. Bài tập:
A
B
C
D
1.Bài tập 1: Cho hình vẽ sau. Chứng minh:
a, D ABD = D CDB
b, = 
Giải
a, Xét D ABD và D CDB có:
AB = CD (gt)
AD = BC (gt)
DB chung
ị D ABD = D CDB (c.c.c)
b, Ta có: D ABD = D CDB (chứng minh trên)
ị = (hai góc tương ứng)
2.Bài tập 22/ SGK - 115:
Xét DOBC và DAED có 
 OB = AE = r
 OC = AD = r
 BC = ED
ịDOBC = DAED 
ị = hay = 
A
B
C
D
3.Bài tập 3
Giải
a, Xét DABD và DCDB có:
AB = CD (gt); (gt); BD chung.
ị DABD = DCDB (c.g.c)
b, Ta có: DABD = DCDB (cm trên)
ị (Hai góc tương ứng)
c, Ta có: DABD = DCDB (cm trên)
ị AD = BC (Hai cạnh tương ứng)
A
B
C
E
D
4.Bài tập 4
Giải
Ta có: hai tia AE và AC cùng thuộc một nửa mặt phẳng bờ là đường thẳng AB và nên tia AC nằm giữa AB và AE. Do đó: +=
ị 
Tương tự ta có: 
Từ (1) và (2) ta có: =.
Xét DABC và DAED có:
AB = AE (gt)
= (chứng minh trên)
AC = AD (gt)
ị DABC = DAED (c.g.c)
5.Bài tập 35/SGK - 123:
Chứng minh:
Xét DOAH và DOBH là hai tam giác vuông có:
 OH là cạnh chung.
= (Ot là tia p/g của xOy)
ị DOAH = DOBH (g.c.g)
ị OA = OB.
b, Xét DOAC và DOBC có 
 OA = OB (c/m trên)
 OC chung; 
 = (gt).
ị DOAC = DOBC (c.g.c)
ị AC = BC và = 
6. Bài tập 54/SBT:
a) Xét DABE và ACD có:
AB = AC (gt) 
 chung 	 ị DABE = DACD
AE = AD (gt) 	(g.c.g) 
	nên BE = CD
A
B
C
D
E
O
b) DABE = DACD 
ị 
Lại có: 	 = 1800
	 = 1800
nên 
Mặt khác: 	AB = AC 
ị BD = CE
	AD = AE 	
	 AD + BD = AB 
	 AE + EC = AC
Trong DBOD và COE có 
BD = CE, 
ị DBOD = DCOE (g.c.g)
3. Củng cố ( 3’ )
GV nhắc lại các kiến thức cơ bản.
4. Hướng dẫn về nhà ( 2’ )
	- Xem lại các dạng bài tập đã chữa.
	- Ôn lại các trường hợp bằng nhau của hai tam giác.
Ngày soạn: 25/ 01/ 2012
Ngày dạy:
Buổi 2. Một số bài toán về đại lượng tỉ lệ nghịch, 
 tỉ lệ thuận.
A. Mục tiêu:
- Hiểu được công thức đặc trưng của hai đại lượng tỉ lệ thuận, của hai đại lượng tỉ lệ nghịch.
- Biết vận dụng các công thức và tính chất để giải được các bài toán cơ bản về hai đại lượng tỉ lệ thuận, hai đại lượng tỉ lệ nghịch.
- Rèn kỹ năng vận dụng, suy luận, trình bày
B. Tiến trình bài dạy:
I. Tổ chức lớp ( 1’ )
 7A :
 7B :
II. Bài mới ( 118’ )
1.Bài 1: 
a. Biết y tỉ lệ thuận với x theo hệ số tỉ lệ k, x tỉ lệ thuận với z theo hệ số tỉ lệ m (k0; m 0). Hỏi z có tỉ lệ thuận với y không? Hệ số tỉ lệ?
b. Biết các cạnh của một tam giác tỉ lệ với 2, 3, 4 và chu vi của nó là 45cm. Tính các cạnh của tam giác đó.
Giải:
a. y tỉ lệ thuận với x theo hệ số tỉ lệ k thì x tỉ lệ thuận với y theo hệ số tỉ lệ 
nên x = y (1)
x tỉ lệ thuận với z theo hệ số tỉ lệ m thì x tỉ lệ thuận với x theo hệ số tỉ lệ
 nên z = x (2)
Từ (1) và (2) suy ra: z = ..y = nên z tỉ lệ thuận với y, hệ số tỉ lệ là 
b. Gọi các cạnh của tam giác lần lượt là a, b, c
	Theo đề bài ra ta có: và a + b + c = 45cm
	áp dụng tính chất của dãy tỉ số bằng nhau
	Vậy chiều dài của các cạnh lần lượt là 10cm, 15cm, 20cm
2. Bài 2: Một hình chữ nhật có chiều rộng bằng nửa chiều dài. Viết công thức biểu thị sự phụ thuộc giữa chu vi C của hình chữ nhật và chiều rộng x của nó.
Giải: Chiều dài hình chữ nhật là 2x
	Chu vi hình chữ nhật là: C = (x + 2x) . 2 = 6x
	Do đó trong trường hợp này chu vi hình chữ nhật tỉ lệ thuận với chiều rộng của nó.
3. Bài 3: Học sinh của 3 lớp 6 cần phải trồng và chăm sóc 24 cây bàng. Lớp 6A có 32 học sinh; Lớp 6B có 28 học sinh; Lớp 6C có 36 học sinh. Hỏi mỗi lớp cần phải trồng và chăm sóc bao nhiêu cây bàng, biết rằng số cây bàng tỉ lệ với số học sinh.
Giải:
 Gọi số cây bàng phải trồng và chăm sóc của lớp 6A; 6B; 6C lần lượt là x, y, z.
	Vậy x, y, z tỉ lệ thuận với 32, 28, 36 nên ta có:
	Do đó số cây bàng mỗi lớp phải trồng và chăm sóc là:
	Lớp 6A: (cây)
	Lớp 6B: (cây)
	Lớp 6C: (cây)
4. Bài 4: Lớp 7A 1giờ 20 phút trồng được 80 cây. Hỏi sau 2 giờ lớp 7A trồng được bao nhiêu cây.
Giải:
	Biết 1giờ 20 phút = 80 phút trồng được 80 cây
	 2 giờ = 120 phút do đó 120 phút trồng được x cây
	 x = (cây)
	Vậy sau 2 giờ lớp 7A trồng được 120 cây.
5. Bài 5: Tìm số coá ba chữ số biết rằng số đó là bội của 18 và các chữ số của nó tỉ lệ theo 1 : 2 : 3.
Giải:
	Gọi a, b, c là các chữ số của số có 3 chữ số phải tìm. Vì mỗi chữ số a, b, c không vượt quá 9 và 3 chữ số a, b, c không thể đồng thời bằng 0
	Nên 1 a + b + c 27
Mặt khác số phải tìm là bội của 18 nên 
	A + b + c = 9 hoặc 18 hoặc 27
	Theo giả thiết ta có: 
	Như vậy a + b + c 6
	Do đó: a + b + c = 18
	Suy ra: a = 3; b = 6; c = 9
Lại vì số chia hết cho 18 nên chữ số hàng đơn vị của nó phải là số chẵn
	Vậy các số phải tìm là: 396; 936
6. Bài 6:
a. Biết y tỉ lệ thuận với x, hệ số tỉ lệ là 3
x tỉ lệ nghịch với z, hệ số tỉ lệ là 15, Hỏi y tỉ lệ thuận hay nghịch với z? Hệ số tỉ lệ?
b. Biết y tỉ lệ nghich với x, hệ số tỉ lệ là a, x tỉ lệ nghịch với z, hệ số tỉ lệ là 6. Hỏi y tỉ lệ thuận hay nghịch với z? Hệ số tỉ lệ?
Giải:
a. y tỉ lệ thuận với x, hệ số tỉ lệ là 3 nên: y = 3x (1)
 x tỉ lệ nghịch với z, hệ số tỉ lệ là 15 nên x . z = 15 x = (2)
 Từ (1) và (2) suy ra: y = . Vậy y tỉ lệ nghịch với z, hệ số tỉ lệ là 45.
b. y tỉ lệ nghịch với x, hệ số tỉ lệ là a nên y = (1)
 x tỉ lệ nghịch với z, hệ số tỉ lệ là b nên x = (2)
 Từ (1) và (2) suy ra y = 
	Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ .
7. Bài 7: 
a. Biết x và y tỉ lệ nghịch với 3 và 5 và x . y = 1500. Tìm các số x và y.
b. Tìm hai số x và y biết x và y tỉ lệ nghịch với 3 và 2 và tổng bình phương của hai số đó là 325.
Giải:
a. Ta có: 3x = 5y 
 mà x. y = 1500 suy ra 
	Với k = 150 thì và 
	Với k = - 150 thì và 
b. 3x = 2y 
x2 + y2 = mà x2 + y2 = 325
suy ra 
Với k = 30 thì x = 
Với k = - 30 thì x = 
8. Bài 8: Học sinh lớp 9A chở vật liệu để xây trường. Nếu mỗi chuyến xe bò chở 4,5 tạ thì phải đi 20 chuyến, nếu mỗi chuyến chở 6 ta thì phải đi bao nhiêu chuyến? Số vật liệu cần chở là bao nhiêu?
Giải:
Khối lượng mỗi chuyến xe bò phải chở và số chuyến là hai đại lượng tỉ lệ nghịch (nếu khối lượng vật liệu cần chuyên chở là không đổi)
Mỗi chuyến chở được	 Số chuyến
	4,5tạ	20
	6tạ	x?
Theo tỉ số của hai đại lượng tỉ lệ nghịch có thể viết 
	 (chuyến)
Vậy nếu mỗi chuyến xe chở 6 tạ thì cần phải chở 15 chuyến.
III. Hướng dẫn về nhà ( 1’ )
Ôn về ba trường hợp bằng nhau của tam giác
Ngày soạn:
Ngày dạy:
 buổi 3. ôn về ba trường hợp bằng nhau củaTam giác
A. Mục tiêu:
- Học sinh nắm được ba trường hợp bằng nhau của tam giác (c.c.c); (c.g.c); (g.c.g).
- Rèn kĩ năng vẽ hình của ba trường hợp bằng nhau của tam giác.
- Rèn kĩ năng sử dụng thước kẻ, compa, thước đo độ để vẽ các trường hợp trên.
- Biết sử dụng các điều kiện bằng nhau của tam giác để chứng minh hai tam giác bằng nhau.
- Rèn kỹ năng vẽ hình, suy luận
B. Tiến trình bài dạy
I. Tổ chức lớp ( 1’ )
 7A :
 7B :
II. Bài mới ( 118’ )
Bài 1: Cho tam giác EKH có E = 600, H = 500. Tia phân giác của góc K cắt EH tại D. Tính EDK; HDK.	K
Giải:
GT: ; E = 600; H = 500
	Tia phân giác của góc K
	Cắt EH tại D
KL: EDK; HDK	 E	 D	 H
Chứng minh:
Xét tam giác EKH 
	K = 1800 - (E + H) = 1800 - (600 + 500) = 700
Do KD là tia phân giác của góc K nên K1 = K = 
Góc KDE là góc ngoài ở ...  góc có cạnh tương ứng vuông góc và một góc nhọn, một góc tù)
Vậy ta tìm được BHM = 390; MHN = 1410
Bài 16: Cho góc xOy = 600 điểm A nằm trong góc xOy vẽ điểm B sao cho Ox là đường trung trực của AC, vẽ điểm C sao cho Oy là đường trung trực của AC
a. Khẳng định OB = OC là đúng hay sai?
b. Tính số đo góc BOC
 A. 600;	B. 900;	C. 1200;	D. 1500
Giải:
a. Chọn A	 
Nhận xét là: 	
OA = OB vì Ox là đường trung trực của AB
OA = OC vì Oy là đường trung trực của AC
Do đó: OB = OC
Chọn C.	
Nhận xét là:
Tam giác OAB cân tại O nên O1 = O2
Tam giác OAC cân tại O nên O3 = O4	 	
Khi đó: BOC = O1 + O2 + O3 + O4 = 2O2 + 2O3	
 = 2(O2 +O3) = 2xOy = 1200	
Vậy ta có: BOC = 1200
Bài 17: Chứng minh rằng trong một tam giác trung tuyến ứng với cạnh lớn hơn thì nhỏ hơn trung tuyến ứng với cạnh nhỏ.
Giải:
Xét tam giác ABC các đường trung tuyến	 A	
 AM, BN, CP trọng tâm G
Giả sử AB < AC	 P	 N
Ta cần đi chứng minh CP > BN	 G	 
Thật vậy
Với hai tam giác ABM và ACM	 B	M	 C
Ta có: MB = MC (vì M là trung điểm của BC)
AM chung: AB < AC do đó: M1 < M2. 
Với hai tam giác GBM và GCM ta có: MB = MC (M là TĐ của BC); GM chung
Do đó: GB < GC GB < GC BN < CP
 Tuần:
Ngày soạn:
Ngày dạy:
 Tiết :
 Cộng trừ đa thức một biến
A. Mục tiêu:
- Biết cộng trừ đa thưc một biến
- Rèn luyện kĩ năng sắp xếp đa thức theo luỹ thừa tăng hoặc giảm của biến và tính tổng, hiệu các đa thức.
B. Chuẩn bị: Bảng phụ ghi đề bài
C. Bài tập:
Bài 1: Tìm bậc của đa thức sau:
a. 5x6 - 2x5 + x4 - 3x3 - 5x6 + x2 + 5
b. 15 - 2x2 + x3 + 2x2 - x3 + x
c. 3x7 + x4 - 3x7 + x5 + x + 4 
d. - 2004
Giải:
a. - 2x5 + x4 - 3x3 + x2 + 5 có bậc là 5
b. 15 + x có bậc là 1
c. x5 + x4 + x + 4 có bậc là 5
d. - 2004 có bậc là 0
Bài 2:
a. Viết các đa thức sau theo luỹ thừa tăng của biến và tìm bậc của chúng.
	f(x) = 5 - 6x4 + 2x3 + x + 5x4 + x2 + 3x3
	g(x) = x5 + x4 - 3x + 7 - 2x4 - x5
b. Viết các đa thức sau theo luỹ thừa giảm dần của biến và tìm hệ số bậc cao nhất, hệ số tự do của chúng.
	h(x) = 5x2 + 9x5 - 7x4 - x2 - 6x5 + x3 + 75 - x
	g(x) = 2x3 + 5 - 7x4 - 6x3 + 3x2 - x5
Giải:
a. Ta có:
	f(x) = 5 + x + x2 + 5x3 - x4 có bậc là 4
	g(x) = 7 - 3x - x4 có bậc là 4
b. Ta có: h(x) = 3x5 - 7x4 + x3 + 4x2 - x + 75
Hệ số bậc cao nhất của h(x) là 3, hệ số tự do là 75.
	g(x) = - x5 - 7x4 - 4x3 + 3x2 + 5
Hệ số bậc cao nhất của g(x) là - 1, hệ số tự do là 5.
Bài 3: Đơn giản biểu thức sau:
a. (a2 - 0,45a + 1,2) + (0,8a2 - 1,2a) - (1,6a2 - 2a)
b. (y2 - 1,75y - 3,2) - (0,3y2 + 4) - (2y - 7,2)
c. 6x2 - 2x2 - (7x2 + 4x + 1) - (x - 2x2 - 1)
d. -(2a3 - a2 + a) + 3a3 - 4a - (5a2 - a3)
Giải:
a. a2 + 0,8a2 - 1,6a2 - 0,45a - 1,2a + 2a + 1,2 = 0,2a2 + 0,35a + 1,2
b. y2 - 0,3y2 - 1,75y - 2y - 3,2 + 7,2 = 0,7y2 - 3,75y + 4
c. 4x2 - 7x2 + 2x2 - 4x - x - 1 + 1 = - x2 - 5x
d. - 2a3 + 3a3 + a3 + a2 - 5a2 - a - 4a = 2a3 - 4a2 - 5a
Bài 4: a. Chứng minh rằng hiệu hai đa thức
0,7x4 + 0,2x2 - 5 và - 0,3x4 + x2 - 8
luôn luôn dương với mọi giá trị thực của x.
b. Tính giá trị của biểu thức
(7a3 - 6a3 + 5a2 + 1) + (5a3 + 7a2 + 3a) - (10a3 + a2 + 8a) với a = - 0,25
Giải:
a. Ta có:
(0,7x4 + 0,2x2 - 5 ) - (0,3x4 + x2 - 8)
= 0,7x4 + 0,2x2 - 5 + 0,3x4 - x2 + 8
= x4 + 3 
b. 7a3 - 6a3 + 5a2 + 1 + 5a3 + 7a2 + 3a - 10a3 - a2 - 8a
= - 4a3 + 11a2 - 5a + 1
Với a = - 0,25 thì giá trị của biểu thức là:
4(- 0,25)3 + 11. (- 0,25)2 - 5.(- 0,25) + 1
= 4(- 0,015625) + 11 (- 0,0625) - 1,25 + 1
= 0,0625 - 0,6875 - 0,25 = - 0,875
Bài 5: Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến.
a. 
b. 1,7 - 12a2 - (2 - 5a2 + 7a) + (2,3 + 7a2 + 7a)
c. 1 - b2 - (5b - 3b2) + (1 + 5b - 2b2)
Giải:
Ta có:
a. x2 - 0,4x - 0,5 - 1 + x - 0,6x2 = - 1,5
b. 1,7 - 12a2 - 2 + 5a2 - 7a + 2,3 + 7a2 + 7a
= (- 12a2 + 5a2 + 7a2) - 7a + 7a + 1,7 - 2 + 2,3 = 2
c. 1 - b2 - 5b + 3b2 + 1 + 5b - 2b2
= - b2 + 3b2 - 2b2 - 5b + 5b + 1 + 1 = 2
Tuần:
Ngày soạn:
Ngày dạy:
Tiết :
Bài 6: Cho các đa thức
	f(x) = 3 + 3x - 1 + 3x4; g(x) = - x3 + x2 - x + 2 - x4
 Tính f(x) + g(x); f(x) - g(x)
Giải: f(x) + g(x) = 3 + 3x - 1 + 3x4 + (- x3 + x2 - x + 2 - x4)
	 = 2x4 + x2 + 2x - 1
Tương tự: f(x) - g(x) = 4x4 + 2x3 - x2 + 4x - 3
Bài 7: tính tổng f(x) + g(x) và hiệu f(x) - g(x) với
a. f(x) = 10x5 - 8x4 + 6x3 - 4x2 + 2x + 1 + 3x6
 g(x) = - 5x5 + 2x4 - 4x3 + 6x2 - 8x + 10 + 2x6
b. f(x) = 15x3 + 7x2 + 3x - + 3x4
 g(x) = - 15x3 - 7x2 - 3x + + 2x4
Giải:
a. Ta có f(x) + g(x) = 6x6 + 5x5 - 6x4 + 2x3 + 2x2 - 6x + 11
 f(x) - g(x) = x6 + 15x5 - 10x4 + 10x3 - 10x2 + 10x - 9
b. f(x) + g(x) = 5x4
 f(x) - g(x) = x4 + 30x3 + 14x2 + 6x - 1
Bài 8: Cho các đa thức
	f(x) = 2x4 - x3 + x - 3 + 5x5
	g(x) = - x3 + 5x2 + 4x + 2 + 3x5
	h(x) = x2 + x + 1 + x3 + 3x4
Hãy tính: f(x) + g(x) + h(x); f(x) - g(x) - h(x)
Giải:
f(x) + g(x) + h(x) = 8x5 + 5x4 + 6x2 + 6x
f(x) - g(x) - h(x) = 2x5 - x4 - 2x3 - 6x2 - 4x - 6
Bài 9: Đơn giản biểu thức:
a. (0,5a - 0,6b + 5,5) - (- 0,5a + 0,4b) + (1,3b - 4,5)
b. (1 - x + 4x2 - 8x3) + (2x3 + x2 - 6x - 3) - (5x3 + 8x2)
Giải:
0,5a - 0,6b + 5,5 + 0,5a - 0,4b + 1,3b - 4,5 = a + 0,3b + 1
1 - x + 4x2 - 8x3 + 2x3 + x2 - 6x - 3 - 5x3 - 8x2 = - 11x3 - 3x2 - x - 2
Bài 10: Chứng minh rằng: A + B - C = C - B - A
Nếu A = 2x - 1; B = 3x + 1 và C = 5x
Giải: 
A + B - C = 2x - 1 + 3x + 1 - 5x = 5x - 5 - 1 + 1 = 0
C - B - A = 5x - 3x + 1 - 2x - 1 = 5x - 3x - 2x + 1 - 1 = 0
Vậy A + B - C = C - B - A
Tuần:
Ngày soạn:
Ngày dạy:
Tiết :
Bài 11: Chứng minh rằng hiệu hai đa thức 
 và 0,75x4 - 0,125x3 - 2,25x2 + 0,4x - luôn nhận giá trị dương.
Giải:
Ta có: () - (0,75x4 - 0,125x3 - 2,25x2 + 0,4x - )= 
= x4 + x2 + 1 1 x
Bài 12: Cho các đa thức
P(x) = x2 + 5x4 - 3x3 + x2 + 4x4 + 3x3 - x + 5
Q(x) = x - 5x3 - x2 - x4 + 4x3 - x2 + 3x - 1
a. Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm của biến.
b. Tính P(x) + Q(x); P(x) - Q(x)
Giải:
a. P(x) = 5 - x + 2x2 + 9x4
 Q(x) = - 1 + 4x - 2x2 - x3 - x4
b. P(x) + Q(x) = (9x4 + 2x2 - x + 5) + (x4 - x3 - 2x2 + 4x - 1) = 10x4 - x3 + 3x + 4
 P(x) - Q(x) = (9x4 + 2x2 - x + 5) - (x4 - x3 - 2x2 + 4x - 1) = 
 = 9x4 + 2x2 - x + 5 - x4 + x3 + 2x2 - 4x + 1 = 8x4 + x3 + 4x2 - 5x + 6
Bài 13: Cho hai đa thức; chọn kết quả đúng.
P = 3x3 - 3x2 + 8x - 5 và Q = 5x2 - 3x + 2
a. Tính P + Q
A. 3x3 - 2x2 + 5x - 3;	C. 3x3 - 2x2 - 5x - 3
B. 3x3 + 2x2 + 5x - 3;	D. 3x2 + 2x2 - 5x - 3
b. Tính P - Q
A. 3x3 - 8x2 - 11x - 7;	C. 3x3 - 8x2 + 11x - 7
B. 3x3 - 8x2 + 11x + 7;	D. 3x2 + 8x2 + 11x - 7
Giải: a. Chọn C;	B.Chọn B
Bài 14: Tìm đa thức A. chọn kết quả đúng.
a. 2A + (2x2 + y2) = 6x2 - 5y2 - 2x2y2
A. A = 2x2 - 3y2 + x2y2;	C. A = 2x2 - 3y2 - x2y2
B. A = 2x2 - 3y2 + 5x2y2;	D. 2x2 - 3y2 - 5 x2y2
b. 2A - (xy + 3x2 - 2y2) = x2 - 8y2 + xy
A. A = x2 - 5y2 + 2xy;	C. A = 2x2 - 5y2 + 2xy
B. A = x2 - 5y2 + xy;	D. A = 2x2 - 5y2 + xy
Giải: a. Chọn C
Ta có: 2A + (2x2 + y2) = 6x2 - 5y2 - 2x2y2
	2A = (6x2 - 5y2 - 2x2y2) - (2x2 + y2) = 4x2 - 6y2 - 2x2y2
	A = 2x2 - 3y2 - x2y2
Vậy đa thức cần tìm là: A = 2x2 - 3y2 - x2y2
b. Chọn D
Ta có 2A - (xy + 3x2 - 2y2) = x2 - 8y2 + xy
	2A = (x2 - 8y2 + xy) + (xy + 3x2 - 2y2) = 4x2 - 10y2 + 2xy
	A = 2x2 - 5y2 + xy
Vậy đa thức cần tìm là A = 2x2 - 5y2 + xy
Bài 15: Cho hai đa thức sau:
	f(x) = a0xn + a1xn-1 + a2xn-2 + ..... + an-1x + an
	g(x) = b0 xn + b1 xn-1 +b2xn-2 +,,,, + bn-1x + bn
a. Tính f(x) + g(x)
A. f(x) + g(x) = (a0 + b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an + bn
B. f(x) + g(x) = (a0 + b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an - bn
C. f(x) + g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)x + an + bn
D. f(x) + g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)x - an + bn
b. Tính f(x) - g(x)
A. f(x) - g(x) = (a0 - b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an + bn
B. f(x) - g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)+ an - bn
C. f(x) - g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)x + an + bn
D. f(x) - g(x) = (a0 + b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an - bn
Giải: a. Chọn A
Ta có: f(x) = a0xn + a1xn-1 + a2xn-2 + ..... + an-1x + an
	g(x) = b0 xn + b1 xn-1 +b2xn-2 +,,,, + bn-1x + bn
 f(x) + g(x) = (a0 + b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an + bn
b.Chọn B
Ta có: f(x) = a0xn + a1xn-1 + a2xn-2 + ..... + an-1x + an
	g(x) = b0 xn + b1 xn-1 +b2xn-2 +,,,, + bn-1x + bn
f(x) - g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)+ an - bn
Tuần:
Ngày soạn:
Ngày dạy:
Tiết :
 Nghiệm của đa thức:
A. Mục tiêu:
- Hiểu khái niệm nghiệm của đa thức
- Biết cách kiểm tra xem số a có phải là nghiệm của đa thức hay không, bằng cách kiểm tra xem P(a) có bằng không hay không
B. Chuẩn bị: Bảng phụ ghi đề bài
C. Bài tập
Bài 1: Tìm nghiệm của đa thức: (x2 + 2) (x2 - 3)
A. x = 1;	B, x = ;	C. x = ;	D. x = 2
Giải: Chọn C
Nghiệm của đa thức: (x2 + 2) (x2 - 3) thoả mãn
(x2 + 2) (x2 - 3) = 0 
Bài 2: Tìm nghiệm của đa thức x2 - 4x + 5
A. x = 0; 	B. x = 1;	C. x = 2;	D. vô nghiệm
b. Tìm nghiệm của đa thức x2 + 1
A. x = - 1;	B. x = 0;	C. x = 1;	D. vô nghiệm
c. Tìm nghiệm của đa thức x2 + x + 1
A. x = - 3;	B. x = - 1;	C. x = 1;	D. vô nghiệm
Giải: a. Chọn D
Vì x2 - 4x + 5 = (x - 2)2 + 1 0 + 1 > 1
Do đó đa thức x2 - 4x + 4 không có nghiệm
b. Chọn D
vì x2 + 1 0 + 1 > 1
Do đó đa thức x2 + 1 không có nghiệm
c. Chọn D
vì x2 + x + 1 = 
Do đó đ thức x2 + x + 1 không có nghiệm
Bài 3: a. Trong một hợp số số nào là nghiệm của đa thức, số nào không là nghiệm của đa thức P(x) = x4 + 2x3 - 2x2 - 6x + 5
b. Trong tập hợp số số nào là nghiệm của đa thức, số nào không là nghiệm của đa thức.
Giải:
a. Ta có: P(1) = 1 + 2 - 2 - 6 + 5 = 0
P(-1) = 1 - 2 - 2 + 6 + 5 = 8 0
P(5) = 625 + 250 - 50 - 30 + 5 = 800 0
P(- 5) = 625 - 250 - 50 + 30 + 5 = 360 0
Vậy x = 1 là nghiệm của đa thức P(x), còn các số 5; - 5; - 1 không là nghiệm của đa thức.
b. Làm tương tự câu a
Ta có: - 3; là nghiệm của đa thức Q(x)
Bài 4: Tìm nghiệm của đa thức sau:
f(x) = x3 - 1;	g(x) = 1 + x3
f(x) = x3 + 3x2 + 3x + 1
Giải:
Ta có: f(1) = 13 - 1 = 1 - 1 = 0, vậy x = 1 là nghiệm của đa thức f(x)
g(- 1) = 1 + (- 1)3 = 1 - 1, vậy x = - 1 là nghiệm của đa thức g(x)
g(- 1) = (- 1)3 + 3.(- 1)2 + 3. (- 1) + 1 = - 1 + 3 - 3 + 1 = 0
Vậy x = 1 là nghiệm của đa thức f(x)
Bài 5: 
a. Chứng tỏ rằng đa thức f(x) = x4 + 3x2 + 1 không có nghiệm
b. Chứng minh rằng đa thức P(x) = - x8 + x5 - x2 + x + 1 không có nghiệm
Giải:
a. Đa thức f(x) không có nghiệm vì tại x = a bất kì f(a) = a4 + 3a2 + 1 luôn dương
b. Ta có: P(x) = x5(1 - x3) + x(1 - x)
Nếu x 1 thì 1 - x3 0; 1 - x 0 nên P(x) < 0
Nếu 0 x 1 thì P(x) = - x8 + x2 (x3 - 1) + (x - 1) < 0
Nếu x < 0 thì P(x) < 0
Vậy P(x) không có nghiệm.

Tài liệu đính kèm:

  • docDay them ky 2.doc