Bài soạn môn Đại số 7 - Chủ đề 1: Ôn tập về các phép toán trong Q

Bài soạn môn Đại số 7 - Chủ đề 1: Ôn tập về các phép toán trong Q

A. Mục tiêu:

- Học sinh nắm vững các quy tắc cộng, trừ số hữu tỉ, biết quy tắc “chuyển vế” trong Q.

- Học sinh nắm vững các quy tắc nhân, chia số hữu tỉ

- Có kĩ năng làm các phép tính cộng, trừ, nhân, chia hai số hữu tỉ nhanh, đúng

- Học sinh nắm được luỹ thừa với số mũ tự nhiên - luỹ thừa của luỹ thừa.

- Tích và thương của hai luỹ thừa cùng cơ số.

- Luỹ thừa của một tích - thương.

- Nắm vững hai tính chất của tỉ lệ thức. Thế nào là tỉ lệ thức. Các hạng tử của tỉ lệ thức.

- Bước đầu biết vận dụng các tính chất của tỉ lệ thức vào giải bài tập.

- Rèn kĩ năng áp dụng các quy tắc về luỹ thừa để tính giá trị của biểu thức luỹ thừa, so sánh.

- Nắm vững tính chất của tỉ lệ thức, nhận biết được tỉ lệ thức và các số hạng của tỉ lệ thức.

- Vận dụng vào giải toán.

 

doc 25 trang Người đăng hoangquan Lượt xem 7715Lượt tải 1 Download
Bạn đang xem 20 trang mẫu của tài liệu "Bài soạn môn Đại số 7 - Chủ đề 1: Ôn tập về các phép toán trong Q", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Buæi 1+2: Chủ đề 1: ¤n tËp vÒ c¸c phÐp to¸n trong Q
Cộng, trừ, nhân, chia số hữu tỉ- Luỹ thừa - Tỉ lệ thức- Dãy số bằng nhau
A. Mục tiêu:
- Học sinh nắm vững các quy tắc cộng, trừ số hữu tỉ, biết quy tắc “chuyển vế” trong Q.
- Học sinh nắm vững các quy tắc nhân, chia số hữu tỉ
- Có kĩ năng làm các phép tính cộng, trừ, nhân, chia hai số hữu tỉ nhanh, đúng
- Học sinh nắm được luỹ thừa với số mũ tự nhiên - luỹ thừa của luỹ thừa.
- Tích và thương của hai luỹ thừa cùng cơ số.
- Luỹ thừa của một tích - thương.
- Nắm vững hai tính chất của tỉ lệ thức. Thế nào là tỉ lệ thức. Các hạng tử của tỉ lệ thức.
- Bước đầu biết vận dụng các tính chất của tỉ lệ thức vào giải bài tập.
- Rèn kĩ năng áp dụng các quy tắc về luỹ thừa để tính giá trị của biểu thức luỹ thừa, so sánh.......
- Nắm vững tính chất của tỉ lệ thức, nhận biết được tỉ lệ thức và các số hạng của tỉ lệ thức.
- Vận dụng vào giải toán.
- Nắm vững tính chất của dãy tỉ số bằng nhau.
B. Chuẩn bị: Bảng phụ ghi đề bài
C. Bài tập:
Buæi 1:
Bài 1: Cho hai số hữu tỉ và (b > 0; d > 0) chứng minh rằng:
Nếu thì a.b < b.c
Nếu a.d < b.c thì 
Giải: Ta có: 
a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì 
Ta có thể viết: 
Bài 2: 
a. Chứng tỏ rằng nếu (b > 0; d > 0) thì 
b. Hãy viết ba số hữu tỉ xen giữa và 
Giải: a. Theo bài 1 ta có: (1)
Thêm a.b vào 2 vế của (1) ta có:
a.b + a.d < b.c + a.b
	 	a(b + d) < b(c + a) (2)
	Thêm c.d vào 2 vế của (1): a.d + c.d < b.c + c.d
 	 d(a + c) < c(b + d) (3)
	Từ (2) và (3) ta có: 
b. Theo câu a ta lần lượt có:
	Vậy 
Bài 2: Tìm 5 số hữu tỉ nằm giữa hai số hữu tỉ và 
Ta có: 
	Vậy các số cần tìm là: 
Bài 3: Tìm tập hợp các số nguyên x biết rằng
	Ta có: - 5 < x < 0,4 (x Z)
	Nên các số cần tìm: x 
Bài 4: Tính nhanh giá trị của biểu thức
	P = = 
Bài 5: Tính
	M = 
	 = 
	 = 
Bài 6: Tìm 2 số hữu tỉ a và b biết
	a + b = a . b = a : b
Giải: Ta có a + b = a . b a = a . b = b(a - 1) (1)
	Ta lại có: a : b = a + b (2)
	Kết hợp (1) với (2) ta có: b = - 1 ; có x = 
	Vậy hai số cần tìm là: a = ; b = - 1
Bài 7: Tìm x biết:
	a.	b. 
	 x = 	 x = 
	 x = 	 x = 
Bài 8: Số nằm chính giữa và là số nào?
	Ta có: vậy số cần tìm là 
Bài 9: Tìm x biết 
a. 
b. 
c. và x < 
Bài 10: Chứng minh các đẳng thức
	a. ;	b. 
a. ;	
	VP = 
b. 
	VP = 
Bài 11: Thực hiện phép tính:
	= 
Buæi 2:
Bài 1: Viết số 25 dưới dạng luỹ thừa. Tìm tất cả các cách viết.
	Ta có: 25 = 251 = 52 = (- 5)2
Bài 2: Tìm x biết
a. = 0 
b. (2x - 1)3 = - 8 = (- 2)3
 2x - 1 = - 2	
	2x = - 1
x = - 
c. 
Bài 3: So sánh 2225 và 3150
Ta có: 2225 = (23)75 = 875; 3150 = (32)75 = 975
Vì 875 < 975 nên 2225 < 3150
Bài 4: Tính
a. 3-2 .
b. 
 = 
c. 
Bài 5:
a. Hiệu của hai số và là:
	A. 0	B. ;	C. ;	D. ; 	 E. Không có
Giải: Ta có: - = . Vậy D đúng
b. thì x bằng
A. 1;	B. ;	C. ;	D. ;	E. 
Giải: Ta có: x = 1
Vậy A đúng.
Bài 6: Lập tất cả các tỉ lệ thức có thể được từ các đẳng thức sau:
a. 7. (- 28) = (- 49) . 4	b. 0,36 . 4,25 = 0,9 . 1,7
 hay 	 
Bài 7: Chứng minh rằng từ đẳng thức a. d = b.c (c, d 0) ta có tỉ lệ thức 
Giải:
	Chia cả hai vế của đẳng thức ad = bc cho cd (c.d 0) ta được 
Bài 8: Cho a, b, c, d , từ tỉ lệ thức hãy suy ra tỉ lệ thức 
Giải:
Đặt = k thì a = b.k; c = d.k
Ta có: (1)
	 (2)
Từ (1) và (2) suy ra: 
Bài 9: Chứng minh rằng: Từ tỉ lệ thức (b + d 0) ta suy ra 
Giải:
Từ a.d = b.c nhân vào hai vế với a.b
Ta có: a.b + a.d = a.b + b.c a(b + d) = b(a + c)
Bài 10: Tìm x trong các tỉ lệ thức sau:
a. 
b. 
c. 
Giải:
a. 0,2x = 4
b. 0,01x.
c. 
Bài 11: Tìm x biết 
a. 
	(2x + 3)(10x + 2) = (5x + 2)(4x + 5)
	2x2 + 4x + 30x + 6 = 20x2 + 25x + 8x + 10
34x + 6 = 33x + 10x = 4
b. 
	(3x - 1)(5x - 34) = (40 - 5x)(25 - 3x)
	15x2 - 102x - 5x + 34 = 1000 - 120x - 125x + 15x
15x2 - 107x + 34 = 1000 - 245x + 15x2
138x = 996
x = 7
Bài 12: Tìm hai số x và y biết và x + y = - 2
Giải: Ta có 
Bài 13: So sánh các số a, b và c biết rằng 
Giải: Ta có: 
Bài 14: Tìm các số a, b, c biết rằng và a + 2b - 3c = - 20
Giải: 	
	a = 10; b = 15; c = 20
Bài 15: Tìm các số a, b, c biết rằng và a2 - b2 + 2c2 = 108
Giải: 
	Từ đó ta tìm được: a1 = 4; b1 = 6; c1 = 8
	A2 = - 4; b2 = - 6; c2 = - 8
Bài 16: Chứng minh rằng nếu a2= bc (với a b, a c) thì 
Giải: từ a2 = bc 
Tiết 17:
Bài 18: Người ta trả thù lao cho cả ba người thợ là 3.280.000 đồng. Người thứ nhất làm được 96 nông cụ, người thứ hai làm được 120 nông cụ, người thứ ba làm được 112 nông cụ. Hỏi mỗi người nhận được bao nhiêu tiền? Biết rằng số tiền được chia tỉ lệ với số nông cụ mà mỗi người làm được.
Giải: Gọi số tiền mà người thứ nhất, thứ hai, thứ ba được nhận lần lượt là x, y, z (đồng). Vì số tiền mà mỗi người được nhận tỉ lệ với số nông cụ của người đó làm được nên ta có:
Vậy 	x = 960.000 (đồng)
	y = 1.200.000 (đồng)
	z = 1.120.000 (đồng)
Người thứ nhất, người thứ hai, người thứ ba lần lượt nhận được là: 960.000 (đồng); 1.200.000 (đồng); 11.120.000 (đồng)
Bài 19: Tổng kết học kỳ lớp 7A có 11 học sinh giỏi, 14 học sinh khá và 25 học sinh trùng bình, không có học sinh kém. Hãy tính tỉ lệ phần trăm mỗi loại học sinh của lớp.
Giải: Số học sinh của lớp 7A là: 11 + 14 + 25 = 50 (học sinh)
	Số học sinh giỏi chiếm: 11 : 50 . 100% = 22%
	Số học sinh khá chiếm: 14 : 50 . 100% = 28%
	Số học sinh trung bình chiếm: 25 : 50 . 100% = 50%
Bài 20: Tìm x biết
a. 	
b.	
Bài 21: Ba số a, b, c khác nhau và khác số 0 thoả mãn điều kiện 
Tính giá trị của biểu thức P = 
Giải:
Theo đề bài ta có: thêm 1 vào mỗi phân số ta có:
 Vì a, b, c là ba số khác nhau và khác 0 nên đẳng thức xảy ra khi và chỉ khi 
	 Thay vào P ta được
	P = = 
	Vậy P = - 3
Bài 22: Tìm x biết
Bài 23: Tỉ số chiều dài và chiều rộng của một hình chữ nhật bằng . Nếu chiều dài hình chữ nhật tăng thêm 3 (đơn vị) thì chiều rộng của hình chữ nhật phải tăng lên mấy đơn vị để tỉ số của hai cạnh không đổi.
Giải: Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là a, b. Khi đó ta có
	Gọi x (đơn vị) phải thêm vào chiều rộng thì 
	mà 2a = 3b 3b + 6 = 3b + 3x x = 2
	Vậy khi thêm vào chiều dài 3 (đơn vị) thì phải thêm vào chiều rộng 2 (đơn vị) thì tỉ số giữa chiều dài và chiều rộng vẫn là .
Buæi 3: Chủ đề 2: ¤n tËp vÒ hµm sè vµ ®å thÞ.
 Một số bài toán về đại lượng tỉ lệ nghịch, tỉ lệ thuận- §å thÞ hµm sè y=ax
A. Mục tiêu:
- Hiểu được công thức đặc trưng của hai đại lượng tỉ lệ thuận, của hai đại lượng tỉ lệ nghịch.
- Biết vận dụng các công thức và tính chất để giải được các bài toán cơ bản về hai đại lượng tỉ lệ thuận, hai đại lượng tỉ lệ nghịch.
- BiÕt c¸ch vÔ ®å thÞ c¸c hµm sè d¹ng y = ax
B. Chuẩn bị: Bảng phụ ghi đề bài
C. Bài tập:
Bài 1: 
a. Biết tỉ lệ thuân với x theo hệ số tỉ lệ k, x tỉ lệ thuận với z theo hệ số tỉ lệ m (k0; m 0). Hỏi z có tỉ lệ thuận với y không? Hệ số tỉ lệ?
b. Biết các cạnh của một tam giác tỉ lệ với 2, 3, 4 và chu vi của nó là 45cm. Tính các cạnh của tam giác đó.
Giải:
a. y tỉ lệ thuận với x theo hệ số tỉ lệ k thì x tỉ lệ thuận với y theo hệ số tỉ lệ 
nên x = y (1)
	x tỉ lệ thuận với z theo hệ số tỉ lệ m thì x tỉ lệ thuận với x theo hệ số tỉ lệ nên z = x (2)
Từ (1) và (2) suy ra: z = ..y = nên z tỉ lệ thuận với y, hệ số tỉ lệ là 
b. Gọi các cạnh của tam giác lần lượt là a, b, c
	Theo đề bài ra ta có: và a + b + c = 45cm
	áp dụng tính chất của dãy tỉ số bằng nhau
	Vậy chiều dài của các cạnh lần lượt là 10cm, 15cm, 20cm
Bài 2: Một hình chữ nhật có chiều rộng bằng nửa chiều dài. Viết công thức biểu thị sự phụ thuộc giữa chu vi C của hình chữ nhật và chiều rộng x của nó.
Giải: Chiều dài hình chữ nhật là 2x
	Chu vi hình chữ nhật là: C = (x + 2x) . 2 = 6x
	Do đó trong trường hợp này chu vi hình chữ nhật tỉ lệ thuận với chiều rộng của nó.
Bài 3: Học sinh của 3 lớp 6 cần phải trồng và chăm sóc 24 cây bàng. Lớp 6A có 32 học sinh; Lớp 6B có 28 học sinh; Lớp 6C có 36 học sinh. Hỏi mỗi lớp cần phải trồng và chăm sóc bao nhiêu cây bàng, biết rằng số cây bàng tỉ lệ với số học sinh.
Giải:
 Gọi số cây bàng phải trồng và chăm sóc của lớp 6A; 6B; 6C lần lượt là x, y, z.
	Vậy x, y, z tỉ lệ thuận với 32, 28, 36 nên ta có:
	Do đó số cây bàng mỗi lớp phải trồng và chăm sóc là:
	Lớp 6A: (cây)
	Lớp 6B: (cây)
	Lớp 6C: (cây)
Bài 4: Lớp 7A 1giờ 20 phút trồng được 80 cây. Hỏi sau 2 giờ lớp 7A trồng được bao nhiêu cây.
Giải:
	Biết 1giờ 20 phút = 80 phút trồng được 80 cây
	 2 giờ = 120 phút do đó 120 phút trồng được x cây
	 x = (cây)
	Vậy sau 2 giờ lớp 7A trồng được 120 cây.
Bài 5: Tìm số coá ba chữ số biết rằng số đó là bội của 18 và các chữ số của nó tỉ lệ theo 1 : 2 : 3.
Giải:
	Gọi a, b, c là các chữ số của số có 3 chữ số phải tìm. Vì mỗi chữ số a, b, c không vượt quá 9 và 3 chữ số a, b, c không thể đồng thời bằng 0
	Nên 1 a + b + c 27
Mặt khác số phải tìm là bội của 18 nên 
	A + b + c = 9 hoặc 18 hoặc 27
	Theo giả thiết ta có: 
	Như vậy a + b + c 6
	Do đó: a + b + c = 18
	Suy ra: a = 3; b = 6; c = 9
Lại vì số chia hết cho 18 nên chữ số hàng đơn vị của nó phải là số chẵn
	Vậy các số phải tìm là: 396; 936
Bài 6:
a. Biết y tỉ lệ thuận với x, hệ số tỉ lệ là 3
x tỉ lệ nghịch với z, hệ số tỉ lệ là 15, Hỏi y tỉ lệ thuận hay nghịch với z? Hệ số tỉ lệ?
b. Biết y tỉ lệ nghich với x, hệ số tỉ lệ là a, x tỉ lệ nghịch với z, hệ số tỉ lệ là 6. Hỏi y tỉ lệ thuận hay nghịch với z? Hệ số tỉ lệ?
Giải:
a. y tỉ lệ thuận với x, hệ số tỉ lệ là 3 nên: y = 3x (1)
 x tỉ lệ nghịch với z, hệ số tỉ lệ là 15 nên x . z = 15 x = (2)
 Từ (1) và (2) suy ra: y = . Vậy y tỉ lệ nghịch với z, hệ số tỉ lệ là 45.
b. y tỉ lệ nghịch với x, hệ số tỉ lệ là a nên y = (1)
 x tỉ lệ nghịch với z, hệ số tỉ lệ là b nên x = (2)
 Từ (1) và (2) suy ra y = 
	Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ .
Bài 7: 
a. Biết x và y tỉ lệ nghịch với 3 và 5 và x . y = 1500. Tìm các số x và y.
b. Tìm hai số x và y biết x và y tỉ lệ nghịch với 3 và 2 và tổng bình phương của hai số đó là 325.
Giải:
a. Ta có: 3x = 5y 
 mà x. y = 1500 suy ra 
	Với k = 150 thì và 
	Với k = - 150 thì và 
b. 3x = 2y 
x2 + y2 = mà x2 + y2 = 325
suy ra 
Với k = 30 thì x = 
Với k = - 30 thì x = 
Bài 8: Học sinh lớp 9A chở vật liệu để xây trường. Nếu mỗi chuyến xe bò chở 4,5 tạ thì phải đi 20 chuyến, nếu mỗi chuyến chở 6 ta thì phải đi bao nhiêu chuyến? Số vật liệu cần chở là bao nhiêu?
Giải:
Khối lượng mỗi chuyến xe bò phải chở và số chuyến là hai đại lượng tỉ lệ nghịch (nếu khối lượng vật liệu cần chuyên chở là không đổi)
Mỗi chuyến chở được	 Số chuyến
	4,5tạ	20
	6tạ	x?
Theo tỉ số của hai đại lượng tỉ lệ nghịch có thể viết 
	 (chuyến)
Vậy nếu mỗi chuyến xe chở 6 tạ thì cần phải chở 15 chuyến.
Bà ...  thì giá trị của đa thức là 52 - (- 3)2 = 25 + 27 = 52
Vậy chọn D
b. Tương tự câu a. Chọn D
Bài 15: a. Bậc của đa thức
3x3y + 4xy5 - 3x6y7 + x3y - 3xy5 + 3x6y7 là
A. 4;	b. 6;	C. 13;	D. 5
b. Đa thức
5,7x2y - 3,1xy + 8y5 - 6,9xy + 2,3x2y - 8y5 có bậc là:
A. 3;	B. 2;	C. 5;	D. 4
Giải: a. Chọn B;	B.Chọn A
Bài 16: Tính hiệu
a. (3x + y - z) - (4x - 2y + 6z)
b. (x3 + 6x2 + 5y3) - (2x3 - 5x + 7y3)
c. (5,7x2y - 3,1xy + 8y3) - (6,9xy - 2,3x2y - 8y3)
Giải:
a. (3x + y - z) - (4x - 2y + 6z) = 3x + y - z - 4x + 2y - 6z = - z + 3y - 7z
b. Làm giống câu a.
c. 5,7x2y - 3,1xy + 8y3 + 2,3x2y - 6,9xy - 8y3 = 8x2y - 10xy
Bài 17: Cho đa thức
A = x2 - 3xy - y2 + 2x - 3y + 1
B = - 2x2 + xy + 2y3 - 3 - 5x + y
C = 7y2 + 3x2 - 4xy - 6x + 4y + 5
Tính A + B + C; A - B + C; A - B - C rồi xác định bậc của đa thức đó.
Giải:
A + B + C = x2 - 3xy - y2 + 2x - 3y + 1- 2x2 + xy + 2y3 - 3 - 5x + y 
 = 2x2 - 6xy + 8y2 - 9x + 3y + 3: có bậc hai
A - B + C = x2 - 3xy - y2 + 2x - 3y + 1 + 2x2 - xy - 2y2 + 5x - 2y + 3 + 3x2 - 4xy + 7y2 - 6x + 4y + 5 = 6x2 - 8xy + 4y2 + x - y + 9: có bậc hai
A - B - C = - 10y2 + 13x - 9y - 1: có bậc hai
Bài 18: Cho các đa thức.
A = 4x2 - 5xy + 3y2; 	B = 3x + 2xy + y2 
C = - x2 + 3xy + 2y2
Tính A + B + C; B - C - A; C - A - B
Giải:
A + B + C = (4x2 - 5xy + 3y2) + (3x + 2xy + y2 ) + (- x2 + 3xy + 2y2)
 = 4x2 - 5xy + 3y2 + 3x2 + 2xy + y2 - x2 + 3xy + 2y2 = 6x2 + 6y2
B - C - A = (3x + 2xy + y2) - (- x2 + 3xy + 2y2) - (4x2 - 5xy + 3y2)
 = 3x2 + 2xy + y2 + x2 - 3xy - 2y2 - 4x2 + 5xy - 3y2 = 4xy - 4y2
C - A - B = (- x2 + 3xy + 2y2) - (4x2 - 5xy + 3y2) - (3x + 2xy + y2)
 = - x2 + 3xy + 2y2 - 4x2 + 5xy - 3y2 - 3x2 - 2xy - y2 = - 8x2 + 6xy - 2y2
Bài 19: Tìm bậc của đa thức sau:
a. 5x6 - 2x5 + x4 - 3x3 - 5x6 + x2 + 5
b. 15 - 2x2 + x3 + 2x2 - x3 + x
c. 3x7 + x4 - 3x7 + x5 + x + 4 
d. - 2004
Giải:
a. - 2x5 + x4 - 3x3 + x2 + 5 có bậc là 5
b. 15 + x có bậc là 1
c. x5 + x4 + x + 4 có bậc là 5
d. - 2004 có bậc là 0
Bài 20:
a. Viết các đa thức sau theo luỹ thừa tăng của biến và tìm bậc của chúng.
	f(x) = 5 - 6x4 + 2x3 + x + 5x4 + x2 + 3x3
	g(x) = x5 + x4 - 3x + 7 - 2x4 - x5
b. Viết các đa thức sau theo luỹ thừa giảm dần của biến và tìm hệ số bậc cao nhất, hệ số tự do của chúng.
	h(x) = 5x2 + 9x5 - 7x4 - x2 - 6x5 + x3 + 75 - x
	g(x) = 2x3 + 5 - 7x4 - 6x3 + 3x2 - x5
Giải:
a. Ta có:
	f(x) = 5 + x + x2 + 5x3 - x4 có bậc là 4
	g(x) = 7 - 3x - x4 có bậc là 4
b. Ta có: h(x) = 3x5 - 7x4 + x3 + 4x2 - x + 75
Hệ số bậc cao nhất của h(x) là 3, hệ số tự do là 75.
	g(x) = - x5 - 7x4 - 4x3 + 3x2 + 5
Hệ số bậc cao nhất của g(x) là - 1, hệ số tự do là 5.
Bài 21: Đơn giản biểu thức sau:
a. (a2 - 0,45a + 1,2) + (0,8a2 - 1,2a) - (1,6a2 - 2a)
b. (y2 - 1,75y - 3,2) - (0,3y2 + 4) - (2y - 7,2)
c. 6x2 - 2x2 - (7x2 + 4x + 1) - (x - 2x2 - 1)
d. -(2a3 - a2 + a) + 3a3 - 4a - (5a2 - a3)
Giải:
a. a2 + 0,8a2 - 1,6a2 - 0,45a - 1,2a + 2a + 1,2 = 0,2a2 + 0,35a + 1,2
b. y2 - 0,3y2 - 1,75y - 2y - 3,2 + 7,2 = 0,7y2 - 3,75y + 4
c. 4x2 - 7x2 + 2x2 - 4x - x - 1 + 1 = - x2 - 5x
d. - 2a3 + 3a3 + a3 + a2 - 5a2 - a - 4a = 2a3 - 4a2 - 5a
Bài 22: a. Chứng minh rằng hiệu hai đa thức
0,7x4 + 0,2x2 - 5 và - 0,3x4 + x2 - 8
luôn luôn dương với mọi giá trị thực của x.
b. Tính giá trị của biểu thức
(7a3 - 6a3 + 5a2 + 1) + (5a3 + 7a2 + 3a) - (10a3 + a2 + 8a) với a = - 0,25
Giải:
a. Ta có:
(0,7x4 + 0,2x2 - 5 ) - (0,3x4 + x2 - 8)
= 0,7x4 + 0,2x2 - 5 + 0,3x4 - x2 + 8
= x4 + 3 
b. 7a3 - 6a3 + 5a2 + 1 + 5a3 + 7a2 + 3a - 10a3 - a2 - 8a
= - 4a3 + 11a2 - 5a + 1
Với a = - 0,25 thì giá trị của biểu thức là:
4(- 0,25)3 + 11. (- 0,25)2 - 5.(- 0,25) + 1
= 4(- 0,015625) + 11 (- 0,0625) - 1,25 + 1
= 0,0625 - 0,6875 - 0,25 = - 0,875
Bài 23: Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến.
a. 
b. 1,7 - 12a2 - (2 - 5a2 + 7a) + (2,3 + 7a2 + 7a)
c. 1 - b2 - (5b - 3b2) + (1 + 5b - 2b2)
Giải:
Ta có:
a. x2 - 0,4x - 0,5 - 1 + x - 0,6x2 = - 1,5
b. 1,7 - 12a2 - 2 + 5a2 - 7a + 2,3 + 7a2 + 7a
= (- 12a2 + 5a2 + 7a2) - 7a + 7a + 1,7 - 2 + 2,3 = 2
c. 1 - b2 - 5b + 3b2 + 1 + 5b - 2b2
= - b2 + 3b2 - 2b2 - 5b + 5b + 1 + 1 = 2
Bài 24: Cho các đa thức
	f(x) = 3 + 3x - 1 + 3x4; g(x) = - x3 + x2 - x + 2 - x4
 Tính f(x) + g(x); f(x) - g(x)
Giải: f(x) + g(x) = 3 + 3x - 1 + 3x4 + (- x3 + x2 - x + 2 - x4)
	 = 2x4 + x2 + 2x - 1
Tương tự: f(x) - g(x) = 4x4 + 2x3 - x2 + 4x - 3
Bài 25: tính tổng f(x) + g(x) và hiệu f(x) - g(x) với
a. f(x) = 10x5 - 8x4 + 6x3 - 4x2 + 2x + 1 + 3x6
 g(x) = - 5x5 + 2x4 - 4x3 + 6x2 - 8x + 10 + 2x6
b. f(x) = 15x3 + 7x2 + 3x - + 3x4
 g(x) = - 15x3 - 7x2 - 3x + + 2x4
Giải:
a. Ta có f(x) + g(x) = 6x6 + 5x5 - 6x4 + 2x3 + 2x2 - 6x + 11
 f(x) - g(x) = x6 + 15x5 - 10x4 + 10x3 - 10x2 + 10x - 9
b. f(x) + g(x) = 5x4
 f(x) - g(x) = x4 + 30x3 + 14x2 + 6x - 1
Bài 26: Cho các đa thức
	f(x) = 2x4 - x3 + x - 3 + 5x5
	g(x) = - x3 + 5x2 + 4x + 2 + 3x5
	h(x) = x2 + x + 1 + x3 + 3x4
Hãy tính: f(x) + g(x) + h(x); f(x) - g(x) - h(x)
Giải:
f(x) + g(x) + h(x) = 8x5 + 5x4 + 6x2 + 6x
f(x) - g(x) - h(x) = 2x5 - x4 - 2x3 - 6x2 - 4x - 6
Bài 27: Đơn giản biểu thức:
a. (0,5a - 0,6b + 5,5) - (- 0,5a + 0,4b) + (1,3b - 4,5)
b. (1 - x + 4x2 - 8x3) + (2x3 + x2 - 6x - 3) - (5x3 + 8x2)
Giải:
0,5a - 0,6b + 5,5 + 0,5a - 0,4b + 1,3b - 4,5 = a + 0,3b + 1
1 - x + 4x2 - 8x3 + 2x3 + x2 - 6x - 3 - 5x3 - 8x2 = - 11x3 - 3x2 - x - 2
Bài 28: Chứng minh rằng: A + B - C = C - B - A
Nếu A = 2x - 1; B = 3x + 1 và C = 5x
Giải: 
A + B - C = 2x - 1 + 3x + 1 - 5x = 5x - 5 - 1 + 1 = 0
C - B - A = 5x - 3x + 1 - 2x - 1 = 5x - 3x - 2x + 1 - 1 = 0
Vậy A + B - C = C - B - A
Bài 29: Chứng minh rằng hiệu hai đa thức 
 và 0,75x4 - 0,125x3 - 2,25x2 + 0,4x - luôn nhận giá trị dương.
Giải:
Ta có: () - (0,75x4 - 0,125x3 - 2,25x2 + 0,4x - )= 
= x4 + x2 + 1 1 x
Bài 30: Cho các đa thức
P(x) = x2 + 5x4 - 3x3 + x2 + 4x4 + 3x3 - x + 5
Q(x) = x - 5x3 - x2 - x4 + 4x3 - x2 + 3x - 1
a. Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm của biến.
b. Tính P(x) + Q(x); P(x) - Q(x)
Giải:
a. P(x) = 5 - x + 2x2 + 9x4
 Q(x) = - 1 + 4x - 2x2 - x3 - x4
b. P(x) + Q(x) = (9x4 + 2x2 - x + 5) + (x4 - x3 - 2x2 + 4x - 1) = 10x4 - x3 + 3x + 4
 P(x) - Q(x) = (9x4 + 2x2 - x + 5) - (x4 - x3 - 2x2 + 4x - 1) = 
 = 9x4 + 2x2 - x + 5 - x4 + x3 + 2x2 - 4x + 1 = 8x4 + x3 + 4x2 - 5x + 6
Bài 31: Cho hai đa thức; chọn kết quả đúng.
P = 3x3 - 3x2 + 8x - 5 và Q = 5x2 - 3x + 2
a. Tính P + Q
A. 3x3 - 2x2 + 5x - 3;	C. 3x3 - 2x2 - 5x - 3
B. 3x3 + 2x2 + 5x - 3;	D. 3x2 + 2x2 - 5x - 3
b. Tính P - Q
A. 3x3 - 8x2 - 11x - 7;	C. 3x3 - 8x2 + 11x - 7
B. 3x3 - 8x2 + 11x + 7;	D. 3x2 + 8x2 + 11x - 7
Giải: a. Chọn C;	B.Chọn B
Bài 32: Tìm đa thức A. chọn kết quả đúng.
a. 2A + (2x2 + y2) = 6x2 - 5y2 - 2x2y2
A. A = 2x2 - 3y2 + x2y2;	C. A = 2x2 - 3y2 - x2y2
B. A = 2x2 - 3y2 + 5x2y2;	D. 2x2 - 3y2 - 5 x2y2
b. 2A - (xy + 3x2 - 2y2) = x2 - 8y2 + xy
A. A = x2 - 5y2 + 2xy;	C. A = 2x2 - 5y2 + 2xy
B. A = x2 - 5y2 + xy;	D. A = 2x2 - 5y2 + xy
Giải: a. Chọn C
Ta có: 2A + (2x2 + y2) = 6x2 - 5y2 - 2x2y2
	2A = (6x2 - 5y2 - 2x2y2) - (2x2 + y2) = 4x2 - 6y2 - 2x2y2
	A = 2x2 - 3y2 - x2y2
Vậy đa thức cần tìm là: A = 2x2 - 3y2 - x2y2
b. Chọn D
Ta có 2A - (xy + 3x2 - 2y2) = x2 - 8y2 + xy
	2A = (x2 - 8y2 + xy) + (xy + 3x2 - 2y2) = 4x2 - 10y2 + 2xy
	A = 2x2 - 5y2 + xy
Vậy đa thức cần tìm là A = 2x2 - 5y2 + xy
Bài 33: Cho hai đa thức sau:
	f(x) = a0xn + a1xn-1 + a2xn-2 + ..... + an-1x + an
	g(x) = b0 xn + b1 xn-1 +b2xn-2 +,,,, + bn-1x + bn
a. Tính f(x) + g(x)
A. f(x) + g(x) = (a0 + b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an + bn
B. f(x) + g(x) = (a0 + b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an - bn
C. f(x) + g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)x + an + bn
D. f(x) + g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)x - an + bn
b. Tính f(x) - g(x)
A. f(x) - g(x) = (a0 - b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an + bn
B. f(x) - g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)+ an - bn
C. f(x) - g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)x + an + bn
D. f(x) - g(x) = (a0 + b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an - bn
Giải: a. Chọn A
Ta có: f(x) = a0xn + a1xn-1 + a2xn-2 + ..... + an-1x + an
	g(x) = b0 xn + b1 xn-1 +b2xn-2 +,,,, + bn-1x + bn
 f(x) + g(x) = (a0 + b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an + bn
b.Chọn B
Ta có: f(x) = a0xn + a1xn-1 + a2xn-2 + ..... + an-1x + an
	g(x) = b0 xn + b1 xn-1 +b2xn-2 +,,,, + bn-1x + bn
f(x) - g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)+ an - bn
Bài 34: Tìm nghiệm của đa thức: (x2 + 2) (x2 - 3)
A. x = 1;	B, x = ;	C. x = ;	D. x = 2
Giải: Chọn C
Nghiệm của đa thức: (x2 + 2) (x2 - 3) thoả mãn
(x2 + 2) (x2 - 3) = 0 
Bài 35: Tìm nghiệm của đa thức x2 - 4x + 5
A. x = 0; 	B. x = 1;	C. x = 2;	D. vô nghiệm
b. Tìm nghiệm của đa thức x2 + 1
A. x = - 1;	B. x = 0;	C. x = 1;	D. vô nghiệm
c. Tìm nghiệm của đa thức x2 + x + 1
A. x = - 3;	B. x = - 1;	C. x = 1;	D. vô nghiệm
Giải: a. Chọn D
Vì x2 - 4x + 5 = (x - 2)2 + 1 0 + 1 > 1
Do đó đa thức x2 - 4x + 4 không có nghiệm
b. Chọn D
vì x2 + 1 0 + 1 > 1
Do đó đa thức x2 + 1 không có nghiệm
c. Chọn D
vì x2 + x + 1 = 
Do đó đ thức x2 + x + 1 không có nghiệm
Bài 36: a. Trong một hợp số số nào là nghiệm của đa thức, số nào không là nghiệm của đa thức P(x) = x4 + 2x3 - 2x2 - 6x + 5
b. Trong tập hợp số số nào là nghiệm của đa thức, số nào không là nghiệm của đa thức.
Giải:
a. Ta có: P(1) = 1 + 2 - 2 - 6 + 5 = 0
P(-1) = 1 - 2 - 2 + 6 + 5 = 8 0
P(5) = 625 + 250 - 50 - 30 + 5 = 800 0
P(- 5) = 625 - 250 - 50 + 30 + 5 = 360 0
Vậy x = 1 là nghiệm của đa thức P(x), còn các số 5; - 5; - 1 không là nghiệm của đa thức.
b. Làm tương tự câu a
Ta có: - 3; là nghiệm của đa thức Q(x)
Bài 37: Tìm nghiệm của đa thức sau:
f(x) = x3 - 1;	g(x) = 1 + x3
f(x) = x3 + 3x2 + 3x + 1
Giải:
Ta có: f(1) = 13 - 1 = 1 - 1 = 0, vậy x = 1 là nghiệm của đa thức f(x)
g(- 1) = 1 + (- 1)3 = 1 - 1, vậy x = - 1 là nghiệm của đa thức g(x)
g(- 1) = (- 1)3 + 3.(- 1)2 + 3. (- 1) + 1 = - 1 + 3 - 3 + 1 = 0
Vậy x = 1 là nghiệm của đa thức f(x)
Bài 38: 
a. Chứng tỏ rằng đa thức f(x) = x4 + 3x2 + 1 không có nghiệm
b. Chứng minh rằng đa thức P(x) = - x8 + x5 - x2 + x + 1 không có nghiệm
Giải:
a. Đa thức f(x) không có nghiệm vì tại x = a bất kì f(a) = a4 + 3a2 + 1 luôn dương
b. Ta có: P(x) = x5(1 - x3) + x(1 - x)
Nếu x 1 thì 1 - x3 0; 1 - x 0 nên P(x) < 0
Nếu 0 x 1 thì P(x) = - x8 + x2 (x3 - 1) + (x - 1) < 0
Nếu x < 0 thì P(x) < 0
Vậy P(x) không có nghiệm.
KÝ duyÖt cña tæ chuyªn m«n. Th¹ch Thµnh, ngµy 10 th¸ng 7 n¨m 2011
 Ng­êi so¹n
 Gi¸o viªn:
 Lª V¨n Dòng

Tài liệu đính kèm:

  • docgiao an day he 2011.doc