I. Mục tiêu :
Kiến thức: - Học sinh giải thích được thế nào là hai góc đối đỉnh . Nêu được tính chất hai góc đối đỉnh thì bằng nhau
Kỹ năng : - Học sinh biết vẽ góc đối đỉnh với một góc cho trước. Nhận biết các góc đối đỉnh trong một hình
II. Chuẩn bị:
SGK, thước thẳng , compa, đo độ, bảng phụ, phấn mầu
III. Hoạt động dạy học:
Hoạt động 1: Giới thiệu chương trình hình học 7
Ngày soạn Ngày dạy: Chương I: Đường thẳng vuông góc- đường thẳng song song Tiết1: hai góc đối đỉnh I. Mục tiêu : Kiến thức: - Học sinh giải thích được thế nào là hai góc đối đỉnh . Nêu được tính chất hai góc đối đỉnh thì bằng nhau Kỹ năng : - Học sinh biết vẽ góc đối đỉnh với một góc cho trước. Nhận biết các góc đối đỉnh trong một hình II. Chuẩn bị: SGK, thước thẳng , compa, đo độ, bảng phụ, phấn mầu III. Hoạt động dạy học: Hoạt động 1: Giới thiệu chương trình hình học 7 Hoạt động 2: Thế nào là hai góc đối đỉnh Hoạt động của thầy và trò Kiến thức cần đạt y GV đưa hình vẽ hai góc đối đỉnh và hai góc không đối đỉnh . x O 4 2 3 y’ x’ Em hãy nhận xét quan hệ về đỉnh , về cạnh của O1 và O3 ,của M1 và M2 và của A và B GV : O1 và O3 có mỗi cạnh của góc này là tia đối một cạnh của góc kia ta nói O1 và O3 là hai góc đối đỉnh . ? Thế nào là hai góc đối đỉnh ? GV treo bảng phụ ghi định nghĩa và yêu cầu học sinh nhắc lại GV : cho hs làm ?2 ? Vậy hai đường thẳng đối nhau tạo thành mấy cặp góc đối đỉnh ? ? Giải thích tại sao mà M1 và M2 lại không phải là cặp góc đối đỉnh ? GV : cho xOy , em hãy vẽ góc đối đỉnh với góc xOy ? b c a M d A B Định nghĩa : Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối một cạnh của góc kia. - Hai đường thẳng cắt nhau sẽ tạo thành 2 cặp góc đối đỉnh Hoạt động 3: Tính chất của hai góc đối đỉnh ? Quan sát hai góc đối đỉnh O1 và O3, O2 và O4 . Em hãy ước lượng bằng mắt và so sánh độ lớn của O1 và O3 ; O2 và O4 ? Dùng thước đo góc đo lại kết quả vừa ước lượng? ? Dựa vào tính chất hai góc kề bù giải thích vì sao O1 = O3 ? ? Em có nhận xét gì về O1+O2? tương tự O3+O2 ? ? Từ (1) và (2) ta suy ra điều gì ? ? Lập luận tương tự hãy giải thích O2 = O4 ? Hai góc đối đỉnh có tính chất gì ? 4 1 O 2 3 O1+O2 = 1800( kề bù ) (1) O3+O4 = 1800( kề bù ) (2) O1+O2 = O3+O2 O1 = O3 Tính chất : Hai góc đối đỉnh thì bằng nhau Hoạt động 4: Củng cố – luyện tập GV : Hai góc đối đỉnh thì bằng nhau , vậy hai góc bằng nhau có đối đỉnh không? GV đưa bảng phụ ghi nội dung bài tập 1, bài tập 2 yêu cầu học sinh làm tại lớp HS: Không học sinh lên bảng làm bài tập Hoạt động 4: Hướng dẫn về nhà - Ghi nhớ tính chất hai góc đối đỉnh - làm bài tập 3,4,5 sgk ; 1,2,3 sbt - Chuẩn bị bài sau IV Rút kinh nghiệm sau tiết dạy Ngày soạn Ngày dạy: Tiết 2: luyện tập I. Mục tiêu : Kiến thức: - Học sinh nắm được định nghĩa hai góc đối đỉnh , tính chất : hai góc đối đỉnh thì bằng nhau Kỹ năng : - Học sinh nhận biết được các góc đối dỉnh trong một hình . - Vẽ được góc đối đỉnh với góc cho trước , - Bước đầu tập suy luận và biết cách trình bày một bài tập. II. Chuẩn bị: SGK, thước thẳng , compa, đo độ, bảng phụ, phấn mầu III. Hoạt động dạy học: Hoạt động 1: Kiểm tra bài cũ HS1: Thế nào là hai góc đỗi đỉnh ?. Vẽ hình , đặt tên và chỉ ra cặp góc đối đỉnh? HS2: Nêu tính chất của hai góc đối đỉnh . Vẽ hình , bằng suy luận hãy giải thích vì sao hai góc đối đỉnh thì bằng nhau . Hoạt động 2: Luyện tập Hoạt động của thầy và trò y’ x’ y x O 470 Kiến thức cần đạt GV cho học sinh đọc đề bài bài 6 ?Để vẽ hai đường thẳng cắt nhau và tạo thành góc 470 ta vẽ như thế nào ? Vẽ xOy = 470 Vẽ tia đối Ox’ của tia Ox Vẽ tia đối Oy’ của tia Oy ta được đường thẳng xx’ cắt yy’ tại O, có một góc bằng 470 ? Dựa vào hình vẽ và nội dung bài toán hãy tóm tắt nội dung bài toán dưới dạng cho và tìm ? ? Biết 1 thì có thể tìm được 3 không ? vì sao ? Tính 2 và 4 như thế nào ? GV cho hs hoạt động nhóm bài tập 7 Sau 3 phút y/c treo bảng nhóm rồi nhận xét đánh giá thi đua. x y z’ x’ y’ z O 3 6 5 2 1 4 GV gọi hs lên bảng vẽ hình ? Qua hình vẽ bài tập 8 em có thể rút ra nhận xét gì? * Hai góc bằng nhau chưa chắc đã đối đỉnh. GV gọi hs đọc đề bài. Muốn vẽ góc vuông xAy ta làm thế nào ? Vẽ ã. Dùng êke vẽ tia Ay /xy = 900 ? Muốn vẽ x’y’ đối đỉnh với xy ta làm thế nào ? ? Hai góc vuông không đối đỉnh là hai góc nào? Ta thấy rằng hai đường thẳng cắt nhau tạo thành một góc vuông thì các góc còn lại cũng vuông . Em hãy giảI thích điều đó bằng lý luận? Cho xx’yy’ = O1 = 470 Tìm O1, O2, O3 1 = 3 = 47 0 ( tính chất hai góc đối đỉnh ) Vì 1 + 2 = 1800 ( hai góc kề bù ) 2 = 1800 – 1 = 1800 - 47 0 = 1330 4 = 1330 ( vì 2,và 4 đối đỉnh ) Bài tập 7: 1 =4 (đối đỉnh ) ; 2 =5 (đối đỉnh) 3 =6 (đối đỉnh ); xz = x’z’(đối đỉnh ) yx’ = xy’; (đối đỉnh ) zy’ = zy; (đối đỉnh ) x y z O 700 700 x y y’ x’ O 700 700 xx’= yy’ = zz’ = 1800 Bài tập 8 ( 83 sgk) Bài tập 9 (83 sgk) y x’ x y’ A xy và yx’ ; yx’ và x’y’ ; xy và xy’ ; y’x’ và y’x là các cặp góc vuông không đối đỉnh Hoạt động 3: Củng cố ? Thế nào là hai góc đối đỉnh ? ? Tính chất của hai góc đối đỉnh ? Làm bàI tập 7 sgk Hoạt động 4 : Hướng dẫn về nhà Làm bàI tập 4,5,6 sbt đọc bài sau: hai đường thẳng vuông góc IV Rút kinh nghiệm sau tiết dạy Tiết3: Hai Đường Thẳng vuông góc Ngày soạn: Ngày dạy: I Mục tiêu : Kiến thức: - Học sinh giải thích được thế nào là hai đường thẳng vuông góc với nhau . Công nhận tính chất : có duy nhất một đường thẳng b đi qua A và ab. Hiểu thế nào là đường trung trực của đoạn thẳng Kỹ năng : - Học sinh biết: vẽ đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước , vẽ đường trungtrực của một đoạn thẳng Bước đầu rèn tư duy suy luận II. Chuẩn bị: SGK, thước thẳng , êke, compa, đo độ, bảng phụ, phấn mầu III. Hoạt động dạy học: Hoạt động 1: Kiểm tra bài cũ HS1: Thế nào là hai góc đối đỉnh ? Nêu tính chất của hai góc đối đỉnh Vẽ xAy = 900 , x’Ay đối đỉnh với xAy Hoạt động 2: thế nào là hai đường thẳng vuông góc Hoạt động của thầy và trò Kiến thức cần đạt GV: Cho hs cả lớp làm ?1 ? Quan sát các nếp gấp và góc tạo bởi các nếp gấp đó? GV: Vẽ H4 sgk. Yêu cầu hs làm ?2 ? Hãy tốm tắt ?2 dưới dạng cho và tìm ? ? Giải thích xOy’ = x’Oy = x’Oy’ bằng cách nào ? GV: xx’ và yy’ là hai đường thẳng vuông góc . Vậy thế nào là hai đường thẳng vuông góc ? y x’ x y’ O Cho: xx’ yy’ = ; xOy =900 Tìm : xOy’ , x’Oy, x’Oy’=? Giải xOy + xOy’= 1800 xOy’= 1800- xOy = 1800 - 900 = 900 xOy’= x’Oy = 900( t/c hai góc đối đỉnh ) Định nghĩa : Hai đường thẳngxx’ và yy’ cắt nhau và trong các góc tạo thành có một góc vuông được gọi là hai đường thẳng vuông góc . Ký hiệu : xx’ yy’ Hoạt động 3: Vẽ hai đường thẳng vuông góc ? Muốn vẽ hai đường thẳng vuông góc ta làm thế nào ? ? Vẽ phác hoạ hai đường thẳng a và a’ vuông góc với nhau và viết ký hiệu Cho học sinh hoạt động nhóm ?4 ? Điểm O và đường thẳng a có thể xảy ra những vị trí như thế nào ? Theo em có mấy đường thẳng đi qua O và vuông góc với a? Gv : Ta thừa nhận tính chất sau: a a’ Điểm O nằm trên đường thẳng a Điểm O nằm ngoài đường thẳng a * Có một và chỉ một đường thẳng a’ đi qua O và vuông góc với đường thẳng a cho trước. Hoạt động 4: Đường trung trực của đoạn thẳng GV : Cho đoạn thẳng AB. Vẽ điểm I là trung điểm của AB, qua I vẽ đường thẳng d vuông góc với AB Đường thẳng d gọi là đường trung trực của đoạn thẳng AB ? Vậy đường trung trực của một đoạn thẳng là gì? ? Muốn vẽ đường trung trực của một đoạn thẳng ta làm thế nào ? A B d . . Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng ấy. tại I Xy là đường trung trực của đoạn thẳng AB : . Hai điểm A và B đối xứng với nhau qua đường thẳng xy Hoạt động 5: Củng cố – luyện tập Hãy nêu định nghĩa hai đường thẳng vuông góc ? lấy ví dụ Hoạt động 4 : Hướng dẫn về nhà Học thuộc định nghĩa hai đường thẳng vuông góc , đường trung trực của một đoạn thẳng Làm bài tập 13; 14;16 sgk ; 10; 11 sbt IV Rút kinh nghiệm sau tiết day Ngày soạn Ngày dạy: Tiết4: Hai Đường Thẳng vuông góc I. Mục tiêu : Kiến thức: - Học sinh giải thích được thế nào là hai đường thẳng vuông góc với nhau . Hiểu thế nào là đường trung trực của đoạn thẳng Kỹ năng : - Học sinh biết: vẽ đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước , vẽ đường trungtrực của một đoạn thẳng Bước đầu rèn tư duy suy luận II. Chuẩn bị: SGK, thước thẳng , compa, đo độ, bảng phụ, phấn mầu III. Hoạt động dạy học: Hoạt động 1: Kiểm tra bài cũ Hs1: Thế nào là hai đường thẳng vuông góc? Cho đường thẳng xx’ và điểm O thuộc xx’, hãy vẽ đươngd thẳng yy’ qua O và vuông góc với xx’? Hs2: Thế nào là đường trung trực của một đoạn thẳng? Cho đoạn thẳng AB= 4cm . Hãy vẽ trung trực của đoạn thẳng ấy ? Hoạt động 2: Luyện tập Hoạt động của thầy và trò Kiến thức cần đạt Gv: Cho hs đọc đề bài Yêu cầu cả lớp thực hành làm bài tập - Gọi hs lần lượt nhận xét ? Nếp gấp Ot như thế nào so với đườngthẳng xy? Có mấy góc vuông được tạo thành? Gv treo bảng phụ có vẽ hình bài tập - Gọi ba học sinh lần lượt lên bảng kiểm tra xem hai đường thẳng a và a’ có vuông góc với nhau không ? Gv :Gọi một hs lên bảng, một hs đứng đọc chậm đề bài . ? Để vẽ được hình theo yêu cầu bài toán thì phải làm qua những bước nào? Gv : Cho hs làm nhanh bài tập 19 Gv: Cho hs đọc nội dung bài tập ? hãy cho biết vị trí của ba điểm A, B , C có thể xảy ra? Hs 1: Lên bảng vẽ hình trường hợp A, B, C thẳng hàng Hs 2: Lên bảng vẽ hình trường hợp A, B, C không thẳng hàng Gv: Lưu ý hs còn có th A nằm giữa B và C Bài tập 15 (sgk) Nếp gấp zt vuông góc với đường thẳng xy tại O Có 4 góc vuông là : xOz; xOt; zOy; zOt a a’ a a’ a’ a Bài tập 17 (sgk) Bài tập 18 (sgk) - Dùng thước đo góc vẽ xOy = 450 - Lấy A bất kỳ trong góc xOy - Dùng êke vẽ d1 qua A và Ox O C B A d1 y x d2 - Dùng êke vẽ d2 qua A và Ôy Bài tập 20 (sgk) TH1: Ba điểm A, B, C thẳng hàng - Dùng thước vẽ đoạn thẳng AB = 2cm - Vẽ tiếp đoạn BC = 3cm - Vẽ trung trực d1 của AB - Vẽ trung trực d2 của BC A B C O2 O1 d1 d2 . . A B C Th2: Ba điểm A, B, C không thẳng hàng Hoạt động 3: củng cố cố cố GV: Đ/N hai đường thẳng vuông góc ? Tính chất Hoạt động 4: dặn dò Làm bài 10,11,12,13,14,15/SBT-đọc trước bài mới IV Rút kinh nghiệm sau tiết dạy Ngày soạn: Ngày dạy: Tiết5: Góc tạo bởi một đường thẳng cắt Hai đường thẳng I. Mục tiêu : Kiến thức: -HS hiểu được hai góc so le trong, hai góc đồng vị, hiểu được tính chất sau : Cho hai đường thẳng và một cát tuyến nếu có một cặp góc so le trong thì: -Hai góc so le trong còn lại bằng nhau -Hai góc trong cùng phía bù nhau Kỹ năng : Nhận biết được cặp góc so le trong, cặp góc đồng vị, cặp góc trong cùng phía II. Chuẩn bị: Thước thẳng, thước đo góc,ê ke bảng nhóm III. Tiến trình dạy ... C - Gọi một bạn lên bảng ghi giả thiết kết luận - Gv: Kðo dài AM một đoạn MD = AM, khi đó A1 bằng góc nào ? vì sao ? ? Để so sánh A1 và A2 ta so sánh A1 với góc nào? học sinh dưới lớp làm vào vở , một bạn lên bảng trình bầy Bài tập 5sgk Hs: BDC có C > 90 0 C > B1 BD > CD (1) Vì B1 900 Xét ABD có B2 > 900 B2 > A AD > BD (2) Từ (1) và (2) AD > BD > CD Bài tập 6 sgk HS: Vì AC = AD + CD mà BC + CD (gt) AC = AD + BC A B C M D 1 2 AC > BC B > A vậy kết luận c là đúng Bài tập 7 sbt Gt ABC, AB < AC M BC, MB = MC Kl So sánh BAM và MAC Chứng minh Kéo dài AM đoạn MD = AM Xét AMB và DMC có : MB = MC(gt) M1 = M2 (đ đ) AM = DM (cách vẽ ) AMB = DMC( c. g. c) A 1 = D và AB = CD Xét ADC có AC > AB (gt) Mà AB = DC AC > CD D > A2 Mà D = A1 A1> A2 Hoạt động 3: Hướng dẫn về nhà. - Bài tập 5, 6 ,8 SBT - Học tuộc nội dung hai định lý - Chuẩn bị bài sau -------------------------------------------------------------------------------------------------------------- Ngày Tháng năm Tiết 49: Quan hệ giữa đường vuông góc và đường xiên đường xiên và hình chiếu I. Mục tiêu : - Học sinh nắm được khái niệm đường vuông góc , đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó , khái niệm hình chiếu vuông góc của một điểmcủa đường xiên , biết vẽ và chỉ ra khái niệm này trên hình vẽ - Học sinh nắm vững định lý 1 , định lý 2 và cách chứng minh - Bước đàu vận dụng 2 định lý vào giải các bài tập đơn giản II.Chuẩn bị của GV và HS: GV: Máy chiếu , giấy trong, thước thẳng ê ke và bảng phụ HS: Làm bài tập ở nhà, thước thẳng , ê ke III.Tiến trình dạy học Hoạt động 1: Kiểm tra bài cũ, đặt vấn đề Gv: Trong một bể bơi hai bạn Hạnh và Bình cùng xuất phát từ điểm A. Hạnh bơi tới H còn Bình bơi tới B( B, H d) AH d, AB không d. Hỏi ai bơi xa hơn ? Giải thích? H B A d Hs: Bình bơi xa hơn Hạnh vì : AHB có H = 900 là góc lớn nhất của tam giác mà AB dối diện với góc h nên AB là cạnh lớn nhất của tam giác . Vậy AB > AH Hoạt động 2: Khái niện đường vuông góc, đường xiên , hình chiếu của đường xiên Gv: Trình bầy như sgk và hình vẽ H B A d - AH là đường vuông góc, AB là đường xiên , HB là hình chiếu của đường xiên AB ? Nhắc lại các khái niệm trên? Gv: cho học sinh làm ?1 sgk Gọi 2 bạn lên bảng trình bầy - AH là đường xiên vuông góc kẻ từ điểm A đến đường thẳng d. - H là chân đường , hay hình chiếu của điểm A trên d. - BH là hình chiếu của đường xiên AB trên d Hoạt động 3: Quan hệ giữa đường vuông góc và đường xiên Gv: cho học sinh làm ?2 ? từ A d k được bao nhiêu đường vuông góc , bao nhiêu đường xiên đến đường thẳng d? ? Hãy so sánh độ dài của đường vuông góc và các đường xiên? Gv: Đưa nội dung định lý lên màn hình - Gọi một học sinh lên bảng vẽ hình , ghi giả thiết kết luận của định lý ? Một bạn lên bảng trình bầy bài làm ? Còn cách khác chứng minh không ? Gv: Độ dài đường vuông góc với AH gọi là khoảng cách từ điểm A đến đường thẳng d. ? Muốn xác định khoảng cách từ một điểm đến một đường thẳng ta làm như thế nào ? Hs: Từ A không nằm trên đường thẳng d kẻ được một đường thẳng vuông góc và có vô số đường xiên đến d H A d B HS: Đường thẳng vuông góc ngắn hơn các đường xiên Gt A d AH là đường AB là đường xiên Kl AH < AB Hs: AHB vuông tại H Cạnh huyền AB là cạnh lớn nhất AH < AB Hs: cách khác: AHB vuông tại H AB2 = AH2 + HB2 ( định lý Pitago) AB2 > AH2 AB > AH Hoạt động 4: Các đường xiên và hình chiếu của chúng GV: Đưa hình 10 trang 58 Sgk và ?4 lên màn hình H C B A d ? Yêu cầu học sinh đọc hình ? Hãy giả thích HB , HC là gì? ? Hãy sử dụng định lý Pita go đ suy ra rằng a. Nếu HB > HC thì AB > AC b. Nếu AB > AC thì HB > HC c. Nếu HB = HC thì AB = AC và ngược lại ? Từ bài toán trên hãy suy ra quan hệ giữa đường xiên và hình chiếu của chúng Gv: Đưa nội dung định lý 2 lên màn hình và yêu cầu học sinh đọc định lý HS: HB, HC là hình chiếu của AB , AC trên d vuông AHB có : AB2 = AH2 + HB2 vuông AHC có : AC2 = AH2 + HC2 a. Nếu: HB > HC HB2 > HC2 AB2 > AC2 AB > AC b. Nếu AB > AC AB2 > AC2 HB2 > HC2 HB > HC c. Nếu HB = HC HB2 > HC2 AH2 + HB2= AH2 + HC2 AB2 = AC2 AB = AC Định lý 2: SGK Hoạt động 5: Hướng dẫn về nhà - Học thuộc định lý và chứng minh các định lý - Học lý thuyết theo nội dung vở ghi và SGK. - Bài tập 8,9,10,11 (Trang 59 SGK), 11,12 (25 SBT). Ngày Tháng năm2007 Tiết 50: Luyện tập I. Mục tiêu : - Củng cố các định lý về quan hệ giữa góc và cạnh đối diện trong tam giác - Rèn luyện kỹ năng vận dụng định lý đề lầm các bài tập và thực tiễn - Hình thành kỹ năng vẽ hình , tìm hướng chứng minh, trình bày bài toán suy luận có căn cứ II.Chuẩn bị của GV và HS: GV: Máy chiếu , giấy trong, thước thẳng ê ke và bảng phụ HS: Làm bài tập ở nhà, thước thẳng , ê ke III.Tiến trình dạy học Hoạt động 1: Kiểm tra bài cũ HS1: Cho điểm A không thuộc đường thẳng d. Hãy tìm hình chiếu của A trên d, vẽ đường xiên từ A đến d, tìm hình chiếu của đường xiên HS2: Làm bài tập - Theo giả thiết BC < BD C nằm giữa B và D Xét ABC có B = 900 (gt) ACB nhọn mà ACB và ACD là hai góc kề bù ACD tù Xét ACD có ACD tù ADC nhọn ACD > ADC AD > AC Dùng Quan hệ giữa góc và cạnh trong một tam giác chứng minh nếu BC< BD thì AC < AD C B D A A B C H M Hoạt động 2: Luyện tập Bài tập 10 trang 59 sgk GV: Đưa đề bài lên màn hình Gọi một học sinh đọc đề bài Một bạn lên ghi gt, kl của bài toán ? Khoảng cách từ A đến BC là đoạn nào ? ? M là điểm bất kỳ trên BC , vậy M có thể ở những vị trí nào? Hãy xét từng vị trí của M để chứmg minh AM < AB Bài 13 ( tr 60 SGK) GV đưa đề bàI và hình vẽ lên máy chiếu A C B E D Chứng minh rằng A, BE < BC B, DE < BC Cho hs đọc và ghi gt kl ? Làm thế nào để chứng minh DE < BC? Hãy xét đường xiên EB và ED từ E đến đường thẳng AB Bài 13 tr 125 SBT Đưa đề bàI lên đèn chiếu gọi một học sinh đọc to đề bài ? Một bạn lên ảng ghi giả thiết kết luận của bàI toán ? Cung tròn tâm A bán kính 9cm có cắt đường thẳng BC không ? có cắt cạnh BC không ? ? Hãy chứng minh nhận xét đó dựa vào định lý đã học gv gợi ý cho học sinh kẻ AH vuông góc với BC Gt ABC, AB = AC MBC Kl AM < AB CM Nừu M trùng H thì AM = AH Mà AH < AB ( đường vuông góc và đường xiên) Nếu M trùng B hoặc C thì AM = AB hoặc AM = AC Nếu M nằm giữa B và H( hoặc C và H) thì MH < BH AM < AB Vậy AM < AB Bài 13 ( tr 60 SGK) A, vì E nằm giữa A và C nên AE < AC BE < BC ( quan hệ giữa đường xiên và hình chiếu ) B, D nằm giữa A và B nên AD < AB ED < EB ( quan hệ giữa đường xiên và hình chiếu ) Mà EB < BC nên DE < BC Bài 13 tr 125 SBT Từ A hạ AH BC -xét AHB và AHC có : H1 = H2 = 900 , AH chung , AB = AC (gt) AHB = AHC(c.huyền- c,g,vuông) HB = HC = BC/2 = 6cm AHB có H = 900 AH2 = AB2 – HB2 AH2 = 102 – 62 = 64 AH = 8cm -Vì bk cung tròn tâm A lớn hơn khoảng cách từ A tới BC nên (a;9cm) cát BC tại 2 điểm Hoạt động 3: Hướng dẫn về nhà. - Bài tập 14(Trang 60 SGK11,15,17 (25,26 SBT). - Học lý thuyết theo nội dung vở ghi và SGK. Ngày Tháng năm2007 Tiết 51: quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác I. Mục tiêu : - Học sinh nắm vững quan hệ giữa độ dài ba canh của một tam giác, từ đó biết được ba đoạn thẳng có độ dàI như thế nào thì không thể là 3 cạnh của một tam giác - Học sinh biết cách chứng minh bất đẳng thức tam giác dựa trên quan hệ giữa cạnh và góc trong một tam giác II.Chuẩn bị của GV và HS: GV: Máy chiếu , giấy trong, thước thẳng ê ke và bảng phụ HS: Làm bài tập ở nhà, thước thẳng , ê ke III.Tiến trình dạy học Hoạt động 1Đặt vấn đề Đi theo đường thẳng ngắn hơn đi theo đường gấp khúc và sao thì ta học bài hôm nay Hoạt động 2: Bất đẳng thức tam giác Gv: cho học sinh làm nội dung ?1 sgk ? Hãy thử vẽ tam giác với các cạnh có độ dàI là: a, 1cm, 2cm, 4cm b, 1cm, 3cm, 4cm c, 2cm, 3cm, 4cm ? Qua nội dung ?1 em có nhận xét gì/ ? trong mỗi trường hợp không vẽ được tổng độ dài hai đoạn nhỏ so với đoạn lớn nhất như thế nào ? ? trong trường hợp vẽ được tổng độ dài hai đoạn nhỏ so với đoạn lớn nhất như thế nào ? ? Vậy em có nhận xét gì về độ dài hai cạnh bất kỳ của một tam giác só với canh còn lại Gv : Đó chính là bất đẳng thức tam giác ? Hãy cho biết giả thiết kết luận của định lý ? GV ; Kðo dài Ba một đoạn AD = AC ? Hãy so sánh độ dàI AC + AB và BD rồi so sánh BD với CB ? Từ đó em rút ra được gì? ? Còn cách chứng minh khác không? Tương tự chứng minh Không vẽ được tam giác có độ dàI 3 cạnh là a, 1cm, 2cm, 4cm b, 1cm, 3cm, 4cm Tổng độ dài hai cạnh nhỏ lớn hơn cạnh lớn nhất Định lý : Trong một tam giác tổng độ dài hai cạnh bất kỳ bao giờ cũng lớn hơn cạnh còn lại Gt ABC Kl AB + AC > BC AB + BC > AC AC + BC > AB Trên tia đối tia AB lẫy điểm D sao cho AD = AC. Trong BDC ta so sánh BD và BC. Do CA nằm giữa hai tia CB và CD nên BCD > ACD . Mà ACD cân ACD = ADC = BDC BCD > BDC BD > BC Mà BD = AB + AD = AB + AC Hay AB + AC > BC Hoạt động 3: Hệ quả của bất đẳng thức tam giác ? Phát biểu quy tắc chuyển vế của bất đẳng thức ? ? áp dung các quy tắc chuyển vế của bất đẳng thức để so sánh độ dài hiệu hai đoạn thẳng với độ hai đoạn còn lại? ? Phát biểu các bất đẳng thức trên bằng lời ? ? Nếu xét đồng thời cả tổng và hiệ độ dàI hai cạnh của một tam giác thì quan hệ của các cạnh đó như thế nào? ? Điền vào chỗ chấm .< BC < .< AC < .< AB < ? Cho học sinh làm ?3 AB + AC > BC AB > BC - AC AB + BC > AC AB > AC - BC AC + BC > AB AC > AB - BC - Trong một tam giác hiệu độ dài hai cạnh bất kỳ bao giờ cũng bé hơn cạnh còn lại Hoạt động 4: Củng cố luyện tập Bài 16 tr 63 sgk ? Dựa vào cơ sở nào để tìm độ dài AB? ? ABC là tam giác gì? Bài 15 tr 63 sgk Cho học sinh hoạt động nhóm Đại diện nhốm lên bảng trình bầy Nhận xét bài làm của nhóm Bài 16 tr 63 sgk Có AC – BC < AB < AC + BC 7 – 1 < AB < 7 + ! 6 < AB < 8 cm mà AB nguyên nên AB = 7cm Vậy ABC cân ở A Bài 15 tr 63 sgk A, 2cm + 3cm < 6 cm không thoả mãn B, 2cm + 4cm = 6cm không thoả mãn , 3cm + 4cm > 6cm thoả mãn là độ dàI ba cạnh của một tam giác Hoạt động 3: Hướng dẫn về nhà. - Bài tập 17(Trang 63 SGK)18,19 (27 SBT). - Học thuộc bất đẳng thức tam giácvà cách chứng minh - Chuẩn bị bài sau -------------------------------------------------------------------------------------------------
Tài liệu đính kèm: