Câu 3 ( 2.0 điểm)
Hưởng ứng phong trào thi đua”Xây dựng trường học thân thiện, học sinh t ch cực”, lớp
9A trường THCS Hoa Hồng dự định trồng 300 cây xanh. Đến ngày lao động, có 5 bạn được
Liên Đội triệu tập tham gia chiến dịch an toàn giao thông nên mỗi bạn còn lại phải trồng thêm
2 cây mới đảm bảo kế hoạch đặt ra. Hỏi lớp 9A có bao nhiêu học sinh.
Câu4 ( 3,5 điểm)
Cho hai đường tròn (O) và (O’) có cùng bán k nh R cắt nhau tại hai điểm A, B sao cho
tâm O nằm trên đường tròn (O’) và tâm O’ nằm trên đường tròn (O). Đường nối tâm OO’ cắt
AB tại H, cắt đường tròn (O’) tại giao điểm thứ hai là C. Gọi F là điểm đối xứng của B qua
O’.
a) Chứng minh rằng AC là tiếp tuyến của (O), và AC vuông góc BF.
b) Trên cạnh AC lấy điểm D sao cho AD = AF. Qua D kẽ đường thẳng vuông góc với
OC cắt OC tại K, Cắt AF tại G. Gọi E là giao điểm của AC và BF. Chứng minh các
tứ giác AHO’E, ADKO là các tứ giác nội tiếp.
c) Tứ giác AHKG là hình gì? Vì sao.
d) T nh diện t ch phần chung của hình (O) và hình tròn (O’) theo bán kính R.
BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 1 SỞ GIÁO DỤC VÀ ĐÀO TẠO PHÚ YÊN --------------------------- KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2011 – 2012 Môn thi : TOÁN Thời gian làm bài : 120 phút, không kể thời gian giao đề Ngày thi : 27 tháng 6 năm 2011 ( buổi chiều) Câu 1 (1.5 điểm) Rút gọn các biểu thức sau: 1 1 3 2 2 3 2 2 ; 3 1 3 1 A B Câu 2 (1.5 điểm) 1) Giải các phương trình: a. 2x 2 + 5x – 3 = 0 b. x 4 - 2x 2 – 8 = 0 Câu 3 ( 1.5 điểm) Cho phương trình: x2 +(2m + 1)x – n + 3 = 0 (m, n là tham số) a) Xác định m, n để phương trình có hai nghiệm -3 và -2. b) Trong trường hợp m = 2, tìm số nguyên dương n bé nhất để phương trình đã cho có nghiệm dương. Câu 3 ( 2.0 điểm) Hưởng ứng phong trào thi đua”Xây dựng trường học thân thiện, học sinh t ch cực”, lớp 9A trường THCS Hoa Hồng dự định trồng 300 cây xanh. Đến ngày lao động, có 5 bạn được Liên Đội triệu tập tham gia chiến dịch an toàn giao thông nên mỗi bạn còn lại phải trồng thêm 2 cây mới đảm bảo kế hoạch đặt ra. Hỏi lớp 9A có bao nhiêu học sinh. Câu4 ( 3,5 điểm) Cho hai đường tròn (O) và (O’) có cùng bán k nh R cắt nhau tại hai điểm A, B sao cho tâm O nằm trên đường tròn (O’) và tâm O’ nằm trên đường tròn (O). Đường nối tâm OO’ cắt AB tại H, cắt đường tròn (O’) tại giao điểm thứ hai là C. Gọi F là điểm đối xứng của B qua O ’ . a) Chứng minh rằng AC là tiếp tuyến của (O), và AC vuông góc BF. b) Trên cạnh AC lấy điểm D sao cho AD = AF. Qua D kẽ đường thẳng vuông góc với OC cắt OC tại K, Cắt AF tại G. Gọi E là giao điểm của AC và BF. Chứng minh các tứ giác AHO’E, ADKO là các tứ giác nội tiếp. c) Tứ giác AHKG là hình gì? Vì sao. d) T nh diện t ch phần chung của hình (O) và hình tròn (O’) theo bán kính R. ĐỀ THI CHÍNH THỨC www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 2 uBND tinh b¾c ninh Së gi¸o dôc vµ ®µo t¹o ®Ò thi tuyÓn sinh vµo líp 10 thpt N¨m häc 2011 - 2012 M«n thi: To¸n Thêi gian: 120 phót (Kh«ng kÓ thêi gian giao ®Ò) Ngµy thi: 09 - 07 - 2011 Bµi 1(1,5 ®iÓm) a)So s¸nh : 3 5 vµ 4 3 b)Rót gän biÓu thøc: 3 5 3 5 3 5 3 5 A Bµi 2 (2,0 ®iÓm) Cho hÖ ph-¬ng tr×nh: 2 5 1 2 2 x y m x y ( m lµ tham sè) a)Gi¶i hÖ ph-¬ng tr×nh víi m = 1 b)T×m m ®Ó hÖ cã nghiÖm (x;y) tháa m·n : x2 – 2y2 = 1. Bµi 3 (2,0 ®iÓm) G¶i bµi to¸n b»ng c¸ch lËp ph-¬ng tr×nh hoÆc hÖ ph-¬ng tr×nh: Mét ng-êi ®i xe ®¹p tõ A ®Õn B c¸ch nhau 24 km.Khi ®i tõ B trë vÒ A ng-êi ®ã t¨ng thªm vËn tèc 4km/h so víi lóc ®i, v× vËy thêi gian vÒ Ýt h¬n thêi gian ®i 30 phót.TÝnh vËn tèc xe ®¹p khi ®i tõ A ®Õn B . Bµi 4 (3,5 ®iÓm) Cho ®-êng trßn (O;R), d©y BC cè ®Þnh (BC < 2R) vµ ®iÓm A di ®éng trªn cung lín BC sao cho tam gi¸c ABC cã ba gãc nhän. C¸c ®-êng cao BD vµ CE cña tam gi¸c ABC c¾t nhau ë H. a)Chøng minh r»ng tø gi¸c ADHE néi tiÕp . b)Gi¶ sö 060BAC , h·y tÝnh kho¶ng c¸ch tõ t©m O ®Õn c¹nh BC theo R. c)Chøng minh r»ng ®-êng th¼ng kÎ qua A vµ vu«ng gãc víi DE lu«n ®i qua mét ®iÓm cè ®Þnh. d) Ph©n gi¸c gãc ABD c¾t CE t¹i M, c¾t AC t¹i P. Ph©n gi¸c gãc ACE c¾t BD t¹i N, c¾t AB t¹i Q. Tø gi¸c MNPQ lµ h×nh g×? T¹i sao? Bµi 5 (1,0 ®iÓm) Cho biÓu thøc: P = 2 2( 2)( 6) 12 24 3 18 36.xy x y x x y y Chøng minh P lu«n d-¬ng víi mäi gi¸ trÞ x;y R §Ò chÝnh thøc www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 3 SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT TỈNH BÀ RỊA – VŨNG TÀU Năm học 2011 – 2012 ------------------- ----------------------- ĐỀ CHÍNH THỨC Môn thi: TOÁN Ngày thi 08 tháng 07 năm 2012 Thời gian làm bài : 120 phút ( không kể thời gian giao đề) Bài 1: ( 3,0 điểm) a) Rút gọn: A = 3:)327212( b) Giải phương trình : x2 - 4x + 3 =0 c) Giải hệ phương trình: 1 42 yx yx Bài 2: ( 1,5 điểm) Cho Parabol (P): y = x2 và đường thẳng (d) : y = 2x + a a\ Vẽ Parabol (P) b\ Tìm tất cả các giá trị của a để đường thẳng (d) và parabol (P) không có điểm chung Bài 3: ( 1,5 điểm): Hai ô tô cùng lúc khởi hành tứ thành phố A đến thành phố B cách nhau 100 km với vận tốc không đổi.Vận tốc ô tô thứ hai lớn hơn vận tốc ô tô thứ nhất 10km/h nên ô tô thứ hai đến B trước ô tô thứ nhất 30 phút.Tính vận tốc của mỗi ô tô trên. Bài 4: ( 3,5 điểm) Trên đường tròn (O,R) cho trước,vẽ dây cung AB cố định không di qua O.Điểm M bất kỳ trên tia BA sao cho M nằm ngoài đường tròn (O,R).từ M kẻ hai tiếp tuyến MC và MD với đường tròn (O,R) (C,D là hai tiếp điểm) a\ Chứng minh tứ giác OCMD nội tiếp. b\ Chứng minh MC2 = MA.MB c\ Gọi H là trung diểm đoạn AB , F là giao điểm của CD và OH. Chứng minh F là điểm cố định khi M thay đổi Bài 5: ( 0,5 điểm) Cho a và b là hai số thỏa mãn đẳng thức: a2 + b2 + 3ab -8a - 8b - 2 ab3 +19 = 0 Lập phương trình bậc hai có hai nghiệm a và b www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 4 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 TRUNG HỌC PHỔ THÔNG ĐĂK LĂK NĂM HỌC: 2011 – 2012 ĐỀ THI CHÍNH THỨC Môn thi: Toán Thời gian làm bài: 120 phút, không kể thời gian giao đề Câu 1. (2,0 điểm) 1) Giải các phương trình sau: a/ 9x 2 + 3x – 2 = 0. b/ x 4 + 7x 2 – 18 = 0. 2) Với giá trị nào nào của m thì đồ thị của hai hàm số y = 12x + (7 – m) và y = 2x + (3 + m) cắt nhau tại một điểm trên trục tung? Câu 2. (2,0 điểm) 1) Rút gọn biểu thức: 2 1 . 1 2 3 2 2 A 2) Cho biểu thức: 1 1 1 2 1 . ; 0, 1 11 1 B x x xx x x a) Rút gọn biểu thức B. b) Tìm giá của của x để biểu thức B = 3. Câu 3.(1,5 điểm) Cho hệ phương trình: 2 1 (1) 2 2 y x m x y m 1) Giải hệ phương trình (1) khi m =1. 2) Tìm giá trị của m để hệ phương trình (1) có nghiệm (x ; y) sao cho biểu thức P = x 2 + y 2 đạt giá trị nhỏ nhất. Câu 4.(3,5 điểm) Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao BD và CE của tam giác ABC cắt nhau tại điểm H. Đường thẳng BD cắt đường tròn (O) tại điểm P; đường thẳng CE cắt đường tròn (O) tại điêm thứ hai Q. Chứng minh rằng: 1) BEDC là tứ giác nội tiếp. 2) HQ.HC = HP.HB 3) Đường thẳng DE song song với đường thẳng PQ. 4) Đường thẳng OA là đường trung trực của đoạn thẳng P. Câu 5. (1,0 điểm) Cho x, y, z là ba số thực tùy ý. Chứng minh: x2 + y2 + z2 – yz – 4x – 3y -7. www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 5 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT KIÊN GIANG NĂM HỌC 2011 – 2012 ĐỀ CHÍNH THỨC MÔN THI: TOÁN (Đề thi có 01 trang) Thời gian: 120 phút (không kể thời gian giao đề) Ngày thi: 22/06/2011 Câu 1: (1,5 điềm) a) Tính: 12 75 48 b) T nh giá trị biểu thức 10 3 11 3 11 10A Câu 2: (1,5 điềm) Cho hàm số y = (2 – m)x – m + 3 (1) a) Vẽ đồ thị (d) của hàm số khi m = 1 b) Tìm giá trị của m để đồ thị hàm số (1) đồng biến Câu 3: (1 điềm) Giải hệ phương trình : 2 5 3 1 x y x y Câu 4: (2,5 điềm) a) Phương trình x2 – x – 3 = 0 có 2 nghiệm x1, x2. T nh giá trị: X = x1 3 x2 + x2 3 x1 + 21 b) Một phòng họp dự định có 120 người dự họp, nhưng khi họp có 160 người tham dự nên phải kê thêm 2 dãy ghế,mỗi dãy phải kê thêm một ghế nữa thì vừa đủ. T nh số dãy ghế dự định lúc đầu. Biết rằng số dãy ghế lúc đầu trong phòng nhiều hơn 20 dãy ghế và số ghế trên mỗi dãy là bằng nhau. Câu 5: (1 điềm) Cho tam giác ABC vuông tại A, đường cao AH. T nh chu vi tam giác ABC biết: AC = 5cm. HC = 25 13 cm. Câu 6: (2,5 điềm) Cho nửa đường tròn tâm O đường k nh AB; Vẽ tiếp tuyến Ax, By với đường tròn tâm O. Lấy E trên nửa đường tròn, qua E vẽ tiếp tuyến với đường tròn cắt Ax tại D cắt By tại C. a) Chứng minh: OADE nội tiếp được đường tròn. b) Nối AC cắt BD tại F. Chứng minh: EF song song với AD. www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 6 SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH NINH BÌNH ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2011 - 2012 Môn : TOÁN Thời gian làm bài 120 phút (không kể thời gian giao đề) Câu 1 (2,0 điểm): 1. Rút gọn các biểu thức a) A 2 8 b) a bB + . a b - b a ab-b ab-a với 0, 0,a b a b 2. Giải hệ phương trình sau: 2x + y = 9 x - y = 24 Câu 2 (3,0 điểm): 1. Cho phương trình 2 2x - 2m - (m + 4) = 0 (1), trong đó m là tham số. a) Chứng minh với mọi m phương trình (1) luôn có 2 nghiệm phân biệt: b) Gọi x1, x2 là hai nghiệm của phương trình (1). Tìm m để 2 2 1 2x + x 20 . 2. Cho hàm số: y = mx + 1 (1), trong đó m là tham số. a) Tìm m để đồ thị hàm số (1) đi qua điểm A (1;4). Với giá trị m vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên R? b) Tìm m để đồ thị hàm số (1) song song với đường thẳng (d) có phương trình: x + y + 3 = 0 Câu 3 (1,5 điểm): Một người đi xe đạp từ địa điểm A đến địa điểm B dài 30 km. Khi đi ngược trở lại từ B về A người đó tăng vận tốc thêm 3 (km/h) nên thời gia về t hơn thời gian đi là 30 phút. T nh vận tốc của người đi xe đạp lúc đi từ A đến B. Câu 4 (2,5 điểm): Cho đường tròn tâm O, bán k nh R. Từ điểm A bên ngoài đường tròn, kẻ 2 tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Từ B, kẻ đường thẳng song song với AC cắt đường tròn tại D (D khác B). Nối AD cắt đường tròn (O) tại điểm thứ hai là K. Nối BK cắt AC tại I. 1. Chứng minh tứ giác ABOC nội tiếp đường tròn. 2. Chứng minh rằng : IC2 = IK.IB. 3. Cho 0BAC 60 chứng minh ba điểm A, O, D thẳng hàng. Câu 5 (1,0 điểm): Cho ba số x, y, z thỏa mãn x, y, z 1:3 x + y + z 3 . Chứng minh rằng: 2 2 2x + y + z 11 www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 7 KÌ THI TUYỂN SINH VÀO LỚP 10 TRUNG HỌC PHỔ THÔNG BÌNH ĐỊNH KHÓA NGÀY :29/06/2011 Đề chính thứ ... chiều dài và chiều rộng của một hình chữ nhật có nữa chu vi là 33m và diện t ch là 252m 2 . 2) Cho phương trình : x2 – 2(m + 2)x + 2m + 3 = 0 (1) Tìm tất cả giá trị m để phương trình (1) có 2 nghiệm phân biệt đều lớn hơn 0,5 . Bài 5 (3đ) Cho đường tròn (C) tâm O. Từ 1 điểm A ngoài (C) vẽ 2 tiếp tuyến AB, AC với (C) (B,C là 2 tiếp điểm). Vẽ đường thẳng (d) qua C và vuông góc với AB, (d) cắt đường thẳng AB tại H. cắt (C) tại E, C và cắt đường thẳng OA tại D. 1) Chứng minh rằng CH // OB và tam giác OCD cân . 2) Chứng minh rằng tứ giác OBDC là hình thoi . 3) M là trung điểm của EC, tiếp tuyến của (C) tại E cắt đường thẳng AC tại K. chứng minh O, M, K thẳng hàng . ----Hết---- www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 45 SỞ GIÁO DỤC – ĐÀO TẠO NAM ĐỊNH ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM 2011 Môn: TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút (không kể thời gian giao đề). Đề thi gồm 01 trang PHẦN 1 – Trắc nghiệm (2điểm): Câu 1: Rút gọn biểu thức 8 2 được kết qủa là A. 10 B. 16 C. 2 2 D.3 2 . Câu 2:Phương trình nào sau đây có hai nghiệm trái dấu: A. 2x x 0 B. 2x 1 0 C. 2x 1 0 D. 2x 2x 5 0 Câu 3: Đường thẳng 2y mx m cắt đường thẳng y = x + 1 tại điểm có hoành độ bằng 1 khi và chỉ khi A.m = 1 B. m = - 2 C.m =2 D.m = 1 hoặc m = -2 Câu 4: Hàm số y m 1 x 2012 đồng biến trên khi và chỉ khi A. m B. m > 1 C. m < 1 D. m 1. Câu 5: Phương trình 2x 1 . x 3 0 có tập nghiệm là A. 1;3 B. 1;1 C. 3 D. 1;1;3 . Câu 6: Cho đường tròn (O;R) có chu vi 4 cm . Khi đó hình tròn (O;R) có diện t ch bằng A. 24 cm B. 23 cm C. 22 cm D. 2cm . Câu7: Biết 3 sin 5 , khi đó cos bằng A. 2 5 B. 3 5 C. 4 5 D. 5 3 . Câu 8: Một hình trụ có chiều cao bằng 3cm, bán k nh đáy bằng 4cm. Khi đó diện t ch mặt xung quanh của hình trụ đó bằng A. 212 cm B. 224 cm C. 240 cm D. 248 cm . PHẦN 2 – Tự luận (9điểm): Câu 1.(1,5 điểm): Cho biểu thức : 2x x x x P x x 1 x 1 (với x 0 và x 1 ) 1) Rút gọn biểu thức P. 2) Tìm x biết P = 0. Câu 2.(1,5 điểm): Cho phương trình 2x x 2m 0 (với m là tham số) 1) Giải phương trình với m = 1. 2) Tìm m để phương trình trên có hai nghiệm phân biệt 1 2x ; x thỏa mãn 2 1 1 2 x x x 2 . Câu 3.(1,0 điểm): Giải hệ phương trình: 1 1 4 x y x(1 4y) y 2 Câu 4.(3,0 điểm): Cho nửa đường tròn (O)đường k nh AB. Điểm C thuộc nửa đường tròn (O) ( CB < CA, C khác B ). Gọi D là điểm ch nh giữa của cung AC, E là giao điểm của AD và BC. 1) Chứng minh tam giác ABE cân tại B. 2) Gọi F là điểm thuộc đường thẳng AC sao cho C là trung điểm AF. Chứng minh EFA EBD. www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 46 3) Gọi H là giao điểm của AC và BD, EH cắt AB tại K, KC cắt đoạn EF tại I. Chứng minh rằng: a) Tứ giác EIBK nội tiếp b) HF EI EK BC BI BK . Câu 5.(1,0 điểm): Giải phương trình : 3 2x 3x 2 3 2x x x x 1 HẾT www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 47 SỞ GIÁO DỤC – ĐÀO TẠO NAM ĐỊNH ĐỀ THI TUYỂN SINH LỚP 10 TRƯỜNG THPT CHUYÊN NĂM HỌC 2011 – 2012 Môn: TOÁN ( chung) ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Đề thi gồm 02 trang PHẦN 1 – Trắc nghiệm (1điểm): Mỗi câu sau có nêu bốn phương án trả lời (A, B,C, D) , trong đó chỉ có một phương án đúng. Hãy chọn phương án đúng và viết vào bài làm chữ cái đứng trước phương án lựa chọn. Câu 1: Phương trình 2x mx m 1 0 có hai nghiệm phân biệt khi và chỉ khi: A. m 2 . B. m . C.m 2 . D. m 2 . Câu 2: Cho đường tròn (O) nội tiếp tam giác MNP cân tại M. Gọi E; F lần lượt là tiếp điểm của đường tròn (O) với các cạnh MN; MP. Biết 0MNP 50 . Khi đó, cung nhỏ EF của đường tròn (O) có số đo bằng: A. 0100 . B. 080 . C. 050 . D. 0160 . Câu 3: Gọi là góc tạo bởi đường thẳng y x 3 với trục Ox, gọi là góc tạo bởi đường thẳng y 3x 5 với trục Ox. Trong các phát biểu sau,phát biểu nào sai ? A. 045 . B. 090 . C. 090 . D. . Câu 4: Một hình trụ có chiều cao là 6cm và diện t ch xung quanh là 236 cm . Khi đó, hình trụ đã cho có bán k nh đáy bằng A. 6 cm. B. 3 cm. C. 3 cm. D. 6cm. PHẦN 2 – Tự luận (9điểm): Câu 1. (1,5 điểm) Cho biểu thức : 3 x 1 1 1 P : x 1 x 1 x x với x 0 và x 1 3) Rút gọn biểu thức P. 4) Tìm x để 2P – x = 3. Câu 2.(2 điểm) 1) Trên mặt phẳng với hệ tọa độ Oxy cho điểm M có hoành độ bằng 2 và M thuộc đồ thị hàm số 2y 2x . Lập phương trình đường thẳng đi qua gốc tọa độ O và điểm M ( biết đường thẳng OM là đồ thị hàm số bậc nhất). 2) Cho phương trình 2x 5x 1 0 1 . Biết phương trình (1) có hai nghiệm 1 2x ;x . Lập phương trình bậc hai ẩn y ( Với các hệ số là số nguyên ) có hai nghiệm lần lượt là 1 2 1 2 1 1 y 1 và y 1 x x Câu 3.(1,0 điểm) Giải hệ phương trình: 3 2 17 x 2 y 1 5 2x 2 y 2 26 x 2 y 1 5 www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 48 Câu 4.(3,0 điểm): Cho đường tròn (O; R). Lấy điểm M nằm ngoài (O;R) sao cho qua M kẻ được hai tiếp tuyến MA, MB của (O;R) và góc AMB nhọn ( với A, B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt đường tròn (O;R) tại N (khác A). Đường tròn đường k nh NA cắt các đường thẳng AB và MA theo thứ tự tại I và K (khác A). 1) Chứng minh tứ giác NHBI là tứ giác nội tiếp. 2) Chứng minh tam giác NHI đồng dạng với tam giác NIK. 3) Gọi C là giao điểm của NB và HI; gọi D là giao điểm của NA và KI. Đường thẳng CD cắt MA tại E. Chứng minh CI = EA. Câu 5.(1,5 điểm) 1) Giải phương trình : 22x x 9 x 9 22 x 1 2) Chứng minh rằng : Với mọi 2 3 2 3 1 1 x 1, ta luôn có 3 x 2 x x x . ----------------------------------------HẾT----------------------------------------- www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 49 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10THPT THỪA THIÊN HUỀ Khóa ngày 24-6-2011 ------------ Môn :TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài : 120 phút Bài 1: (2,5 điểm ) a)Rút gọn biểu thức :A= 2 3 2 3 b) Trục căn ở mẫu số rồi rút gọn biểu thức : B = 2 3 24 3 2 c)Không sử dụng máy t nh cầm tay, giải hệ phương trình : 2x + 6y = 7 5x 2y = 9 Bài 2: (2,5 điểm) Cho hàm số y= 2 1 4 x có đồ thị (P) và hàm số y =mx – 2 m – 1 ( m 0) có đồ thị (d) a)Trên cùng một mặt phẳng tọa độ, vẽ đồ thị (P) và đồ thị (d) khi m=1. b)Tìm điều kiện của m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ x1 và x2. Khi đó xác định m để 2 21 2 1 2x x + x x = 48 . Bài 3) (1 điểm) Trong một phòng có 144 người họp, được sắp xếp ngồi hết trên dãy ghế (số người trên mỗi dãy ghế đều bằng nhau).Nếu người ta thêm vào phòng họp 4 dãy ghế nữa, bớt mỗi dãy ghế ban đầu 3 người và xếp lại chỗ ngồi cho tất cả các dãy ghế sao cho số người trên mỗi dãy ghế đều bằng nhau thì vừa hết các dãy ghế.Hỏi ban đầu trong phòng họp có bao nhiêu dãy ghế ? Bài 4) (1,25 điểm) Cho tam giác ABC vuông ở A (hình bên) a) T nh sin B.Suy ra số đo của góc B. b) T nh các độ dài HB,HC và AC. 4 cm 8 cm H CB A Bài 5) (1,5 điểm ) Cho tam giác nhọn ABC nội tiếp trong đường tròn (O;R).Vẽ các đường cao BD và CE (DAC,E AB) và gọi H là trực tâm của tam giác ABC.Vẽ hình bình hành BHCG a)Chứng minh:Tứ giác AEHD nội tiếp và điểm G thuộc đường tròn (O;R). b)Khi đường tròn (O;R) cố định, hai điểm B,C cố định và A chạy trên (O;R) thì H chạy trên đường nào? Bài 6): (1,25 điểm) Cho hình chữ nhật MNDC nội tiếp trong nửa đường tròn tâm O, đường k nh AB (M,N thuộc đoạn thẳng AB và C,D ở trên nửa đường tròn.Khi cho nửa đường tròn đường k nh AB và hình chữ nhật MNDC quay một vòng quanh đường k nh AB cố định, ta được một hình trụ đặt kh t vào trong hình cầu đường k nh AB. Biết hình cầu có tâm O, bán k nh R=10 cm và hình trụ có bán k nh đáy r= 8 cm đặt kh t vào trong hình cầu đó.T nh thể t ch hình cầu nằm ngoài hình trụ đã cho. Hết www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 50 Së gi¸o dôc -®µo t¹o Hµ nam §Ò chÝnh thøc Kú thi tuyÓn sinh vµo líp 10 THPT chuY£N N¨m häc 2011-2012 M«n : TOÁN- §Ò chung Thêi gian lµm bµi :120 phót (Kh«ng kÓ thêi gian giao ®Ò) Thi chiÒu 22 th¸ng 7 n¨m 2011 Bài 1: ( 2 đ) 1/ Rút gọn: P = 6 1 5 1 : 5 5 1 5 45 2/ Giải PT : 3 23 5 0x x x Bài 2: (2 đ ) Cho hàm số y = - 8x2 có đồ thị là (P) a/ Tìm toạ độ của 2 điểm A, B trên đồ thị (P) có hoành độ lần lượt là -1 và 1 . 2 b/ Viết phương trình đường thẳng AB Bài 3: (2 đ) 1/ Tìm giá trị của x thoả mãn: 1 1 1 499 ... 201216 17 68 17 18 18 17 1 ( 1)x x x x 2/ Cho x, y là các số không âm thoả mãn : x+y = 4. Tìm giá trị nhỏ nhất , giá trị lớn nhất của biểu thức P = 4 4 3 3 2 2 2 25( ) 14 58 6x y xy x y x y x y xy Bài 4 ( 4 đ) Cho tứ giác ABCD nội tiếp đường tròn (O) và AD là đường k nh. Gọi I là điểm ch nh giữa của cung nhỏ BC; đường thẳng AI cắt dây cung BC và đường thẳng DC lần lượt tại E,M ; đường thẳng DI cắt dây cung BC và đường thẳng AB lần lượt tại F, N. a / C/m hai tam giác IAN và IDM đồng dạng . b / C/m tứ giác ANMD là tứ giác nội tiếp. c / C/m đẳng thức: IE.IA = IF.ID d / C/m OI vuông góc với MN HÕt Hä vµ tªn thÝ sinh: .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..Sè b¸o danh.... .. .. .. .. .. .. .. .. .. .. .. .. .. Ch÷ ký cña gi¸m thÞ 1.. .. .. .. .. .. .. .. .. .. .. . .. .. ..Ch÷ ký cña gi¸m thÞ 2.. .. .. .. .. .. .. .. .. .. .. .. www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com BỘ ĐỀ THI VÀO THPT CỦA 54 TỈNH – NĂM HỌC 2011 - 2012 SƯU TẦM: ĐOÀN TIẾN TRUNG - Phó hiệu trưởng THCS Hoàng Văn Thụ - NĐ 51 www.MATHVN.com - Toán Học Việt Nam www.MATHVN.com
Tài liệu đính kèm: