Bài 3(2,5 điểm). Tìm n là số tự nhiên để :
Bài 4(2 điểm). Cho góc xOy cố định. Trên tia Ox lấy M, Oy lấy N sao cho OM + ON = m không đổi. Chứng minh : Đường trung trực của MN đi qua một điểm cố định.
Bài 5(1,5 điểm).Tìm đa thức bậc hai sao cho :
Áp dụng tính tổng : S = 1 + 2 + 3 + + n.
Đề bài ****** (Thời gian làm bài 120 phút - Không kể chép đề) Bài 1(2 điểm). Cho a.Viết biểu thức A dưới dạng không có dấu giá trị tuyệt đối. b.Tìm giá trị nhỏ nhất của A. Bài 2 ( 2 điểm) a.Chứng minh rằng : . b.Tìm số nguyên a để : là số nguyên. Bài 3(2,5 điểm). Tìm n là số tự nhiên để : Bài 4(2 điểm). Cho góc xOy cố định. Trên tia Ox lấy M, Oy lấy N sao cho OM + ON = m không đổi. Chứng minh : Đường trung trực của MN đi qua một điểm cố định. Bài 5(1,5 điểm).Tìm đa thức bậc hai sao cho : áp dụng tính tổng : S = 1 + 2 + 3 + + n. phòng giáo dục yên định đề thi học sinh giỏi toán 7 Câu 1 (2đ) Tìm x, y, z Z, biết a. /x/ + /-x/ = 3 - x b. c. 2x = 3y; 5x = 7z và 3x - 7y + 5z = 30 Câu 2 (2đ) a. Cho A = Hãy so sánh A với b. Cho B = Tìm x Z để B có giá trị là một số nguyên dương Câu 3 (2đ) Một người đi từ A đến B với vận tốc 4km/h và dự định đến B lúc 11 giờ 45 phút. Sau khi đi được quãng đường thì người đó đi với vận tốc 3km/h nên đến B lúc 12 giờ trưa Tính quãng đườngAB và người đó khởi hành lúc mấy giờ? Câu 4 (3đ) Cho có > 900. Gọi I là trung điểm của cạnh AC. Trên tia đối của tia IB lấy điểm D sao cho IB = ID. Nối c với D. a. Chứng minh b. Gọi M là trung điểm của BC; N là trung điểm của CD. CMR I là trung điểm của MN c. Chứng minh AIB < BIC d. Tìm điều kiện của để AC CD Câu 5 (1đ) Tìm giá trị nhỏ nhất của biểu thức: P = Khi đó x nhận giá trị nguyên nào.
Tài liệu đính kèm: