Giáo án môn Hình học 7 - Tiết 33 đến tiết 38

Giáo án môn Hình học 7 - Tiết 33 đến tiết 38

1. MỤC TIÊU

a) Kiến thức

- Khắc sâu kiến thức, rèn kĩ năng chứng minh hai tam giác bằng nhau theo trường hợp góc-cạnh-góc. Từ chứng minh hai tam giác bằng nhau suy ra được các cạnh còn lại, các góc còn lại của hai tam giác bằng nhau.

b) Kĩ năng

- Rèn kĩ năng vẽ hình, viết giả thiết, kết luận, cách trình bày.

- Phát huy trí lực của HS.

c) Thái độ

- Nghiêm túc, cẩn thận khi học hình.

 

doc 28 trang Người đăng hoangquan Lượt xem 1113Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án môn Hình học 7 - Tiết 33 đến tiết 38", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 1/1/2010
Ngày giảng: 
9/1/2010
lớp 7A4
8/1/2010
lớp 7A5
4/1/2010
lớp 7A6
Tiết 33 LUYỆN TẬP BA TRƯỜNG HỢP BẰNG NHAU
CỦA TAM GIÁC (t1)
1. MỤC TIÊU
a) Kiến thức
- Khắc sâu kiến thức, rèn kĩ năng chứng minh hai tam giác bằng nhau theo trường hợp góc-cạnh-góc. Từ chứng minh hai tam giác bằng nhau suy ra được các cạnh còn lại, các góc còn lại của hai tam giác bằng nhau.
b) Kĩ năng
- Rèn kĩ năng vẽ hình, viết giả thiết, kết luận, cách trình bày.
- Phát huy trí lực của HS.
c) Thái độ
- Nghiêm túc, cẩn thận khi học hình.
2. CHUẨN BỊ 
a) Giáo viên
- Thước thẳng, thước đo độ, bảng phụ hoặc giấy trong, bút dạ, máy chiếu.
b) Học sinh
- Ôn tập kiến thức cũ. Thước thẳng, thước đo độ.
3. TIẾN TRÌNH DẠY HỌC
a) Kiểm tra bài cũ (9')
* Yêu cầu:
- Phát biểu trường hợp bằng nhau của tam giác góc-cạnh-góc.
HS: trả lời miệng
- Chữa bài tập 35 Tr 123 SGK
HS: Vẽ hình và viết GT, KL trên bảng.
A
B
H
C
t
x
y
O
1
2
1
2
GT
Góc xOy khác góc bẹt
Ot là phân giác góc xOy
H Ỵ tia Ot
AB ^ Ot
A Ỵ Ox , B Ỵ Oy
KL
a) OA = OB
b) CA = CB ; OAC = OBC
HS: được kiểm tra, trả lời miệng. Cả lớp theo dõi.
a) Xét D OHA và D OBH có
 = (gt)
OH chung.
 = = 900
Þ D OAH = D OBH (g.c.g)
Þ OA = OB (cạnh tương ứng của hai tam giác bằng nhau)
GV lưu ý HS: điểm C có thể nằm trong đoạnn AH hoặc nằm ngoài đoạn AH
b) Xét D OAC và D OBC có
AOC = BOC (theo c/m trên)
OA = OB (chứng minh câu a)
cạnh OC chung
ÞDOAC=DOBC (theo trường hợp c.g.c)
Þ AC = BC hay CA = CB
OAC = OBC (cạnh, góc tương ứng của hai tam giác bằng nhau)ù
GV: Đánh giá bài làm HS vừa được kiểm tra. Sau đó GV đưa lời giải đáp mẫu của bài 35 lên màn hình của máy hoặc bảng phụ giúp HS kiểm tra, xem xét lại cách trình bày lời giải bài của mình.
HS: Lớp theo dõi bài trình bày của bạn để nhận xét đánh giá.
* Đặt vấn đề: Ở tiết này chúng ta sẽ ôn tập kiến thức về ba trường hợp bằng nhau của tam giác thông qua việc làm một số bài tập.
b) Bài mới
Hoạt động của GV
Hoạt động của HS
LUYỆN TẬP VỀ HAI TAM GIÁC BẰNG NHAU
TRÊN NHỮNG HÌNH ĐÃ VẼ SẴN (30')
Bài tập 1 (bài 37 Tr 123 SGK)
(Đề bài đưa lên màn hình)
trên mỗi hình 101, 102, 103 có các tam giác nào bằng nhau? Vì sao?
A
B
C
3
80o
D
E
E
3
30o
80o
H
G
I
3
Hình 101
HS cả lớp quan sát đề bài, suy nghĩ trong 5 phút. Sau đó lần lượt 3 HS trả lời câu hỏi ở 3 hình.
* Hình 101 có.
D ABC và DFDE với:
 = = 800
BC = DE = 3 (đơn vị độ dài)
 = (vì = 400, 
 = 1800 – (800 + 600) = 400)
Þ DABC = DFDE (g.c.g)
30o
80o
K
L
M
3
Hình 103
* Hình 102: Không có hai tam giác nào bằng nhau, vì theo các trường hợp bằng nhau của tam giác không có cặp tam giác nào đủ tiêu chuẩn bằng nhau.
1
40o
60o
60o
40o
R
P
N
Q
1
Hình 103
* Hình 103:
Xét D NRQ và D RNP có
 = 1800 – (600 + 400) = 800
 = 1800 – (600 + 400) = 800
Þ = = 800
cạnh NR chung
 = = 400
Þ D NRQ = D RNP (g.c.g)
1
D
B
A
C
1
Bài tập 2 (Bài 38 Tr 124 SGK )
GV yêu cầu HD nêu GT, KL của bài.
HS nêu GT, KL của bài
GT
AB //CD , AC //BD
KL
AB = CD ; AC = BD 
GV gợi ý: Nối AD và hỏi: để chứng minh AB = CD, AC = BD ta làm thế nào ?
HS: Để chứng minh AB = CD.
AC = BD ta cần chứng minh 
D ABD = DCA
GV: Yêu cầu HS trình bày bài
HS trình bày
Do AB // CD Þ = (2 góc so le
 trong)
vì AC // BD Þ = (2 góc so le 
 trong) 
cạnh AD chung
Þ D ABD = D DCA (g.c.g)
Þ AB = CD ; AC = BD (cạnh tương ứng của hai tam giác bằng nhau)
LUYỆN BÀI TẬP VỀ HAI TAM GIÁC BẰNG NHAU
(HS phải vẽ hình)
Bài 3: Cho tam giác ABC có = .
Tia phân giác góc B cắt AC ở D, tia phân giác góc C cắt AB ở E. So sánh độ dài BD và CE.
- GV: Hướng dẫn HS cách vẽ hình.
+ Vẽ cạnh BC
+ Vẽ góc B ( < 900 )
+ Vẽ góc C mà = (dùng compa và thước thẳng), hai cạnh còn lại của góc B và góc C cắt nhau tại A ta được D ABC.
- Nhìn hình vẽ ta có dự đoán gì về độ dài của BD và CE ?
Một HS đọc to đề bài.
HS: vẽ hình theo hướng dẫn của GV.
1
1
D
C
B
E
A
Một HS vẽ hình và viết GT, KL trên bảng.
GT
D ABC: = 
BD phân giác góc B (D Ỵ AC)
CE phân giác góc C (E Ỵ AB)
KL
So sánh BD với CE
Ta chỉ ra hai tam giác nào bằng nhau ?
HS: Ta cần chứng minh
 D BEC = D CDB
Một HS lên bảng chứng minh:
Xét D BEC và D CDB có
 = (theo giả thiết)
 = (vì = ; = mà = )
cạnh BC chung
Þ D BCE = D CDB (g.c.g)
Þ CE = BD (cạnh tương ứng)
c) Củng cố – luyện tậpÁ (5')
GV: Nêu câu hỏi.
- Nêu các trường hợp bằng nhau của hai tam giác.
- Nêu các hệ quả của các trường hợp bằng nhau của tam giác c.g.c ? g.c.g ?
- Để chỉ ra 2 đoạn thẳng, 2 góc bằng nhau ta thường làm theo những cách nào ?
- HS: Trả lời những trường hợp bằng nhau của tam giác đã được học (c.c.c; c.g.c; g.c.g )
- HS nêu:
+ Hệ quả Tr 118 SGK
+ Hệ quả 1 – Hệ quả 2 Tr 122 SGK
- Có nhiều cách để chỉ ra 2 đoạn thẳng, 2 góc bằng nhau nhưng thường thực hiện theo cách:
Chỉ ra 2 góc, 2 đoạn thẳng có cùng số đo; hoặc 2 góc cùng bằng một góc, hai đoạn thẳng cùng bằng đoạn thẳng thứ 3; hoặc chỉ ra 2 góc, 2 đoạn thẳng đó là 2 góc, 2 cạnh tương ứng của hai tam giác bằng nhau.
d) Hướng dẫn học bài ở nhà (1')
- Về nhà cần nắm vững các trường hợp bằng nhau của hai tam giác, chú ý các hệ quả của nó.
- Làm tốt các bài tập SGK ; bài 52, 53, 54, 55 Tr. 104 SBT.
Ngày soạn: 1/1/2010
Ngày giảng: 
9/1/2010
lớp 7A4
8/1/2010
lớp 7A5
4/1/2010
lớp 7A6
Tiết 34 LUYỆN TẬP BA TRƯỜNG HỢP BẰNG NHAU
CỦA TAM GIÁC (t1)
1. MỤC TIÊU
a) Kiến thức
- Khắc sâu kiến thức, rèn kĩ năng chứng minh hai tam giác bằng nhau theo trường hợp góc-cạnh-góc. Từ chứng minh hai tam giác bằng nhau suy ra được các cạnh còn lại, các góc còn lại của hai tam giác bằng nhau.
b) Kĩ năng
- Rèn kĩ năng chứng minh hai tam giác vuông bằng nhau nhờ áp dụng các trường hợp bằng nhau c.g.c ; g.c.g của hai tam giác, áp dụng hai hệ quả của trường hợp bằng nhau g.c.g.
- Rèn kĩ năng vẽ hình, viết giả thiết, kết luận, chứng minh.
c) Thái độ
- Nghiêm túc ôn tập, biết tự củng cố kiến thức.
2. CHUẨN BỊ 
a) Giáo viên
- Thước thẳng, thước đo độ, bảng phụ hoặc giấy trong, bút dạ, máy chiếu.
b) Học sinh
- Ôn tập kiến thức cũ. Thước thẳng, thước đo độ.
3. TIẾN TRÌNH DẠY HỌC
a) Kiểm tra bài cũ (9')
Hoạt động của GV
Hoạt động của HS
Đề bài viết trên bảng phụ
HS1: Chữa bài tập 39 Tr 124 SGK.
A
B
C
H
Trên mỗi hình có các tam giác vuông nào bằng nhau ?
HS1 trả lời miệng
D
E
F
Hình 105
- Theo hình 105 có:
D AHB = D AHC (c.g.c) vì có
BH = CH (gt);
AHB = AHC (= 900);
AH chung
Hình 106
- Theo hình 106 có:
D EDK = D FDK (g.c.g) vì có:
EDK = FDK (gt);
cạnh DK chung
DKE = DKF (= 900)
A
B
C
D
Hình 107
- Theo hình 107 có:
D vuông ABD = D vuông ACD
(cạnh huyền – góc nhọn).
Vì có BAD = CAD (gt)
cạnh huyền AD chung.
HS2: Chỉ ra các tam giác bằng nhau trên hình sau:
A
B
C
D
E
H
Hình 108
HS2 làm trên bảng
- D ABD = D ACD vì
 = = 900
và BAD = CAD (gt)
cạnh huyền AD chung
(theo TH cạnh huyền – góc nhọn)
D BED = D CHD vì
 = = 900; = (đối đỉnh)
BD = CD (do D ABD = D ACD chứng minh trên ) (theo TH g.c.g).
- GV đánh giá, cho điểm hai HS lên bảng.
- D ADE = D ADH vì
cạnh AD chung
DE = DH (do D BED = D CHD)
AE = AH (= AB + BE = AC + CH)
(theo TH c.c.c)
HS lớp nhận xét bài làm của bạn
b) Bài mới
Bài 62 Tr 105 SBT
(Đề bài đưa lên màn hình)
GV vẽ hình và hướng dẫn
B
H
C
A
E
N
D
M
LUYỆN TẬP (20')
HS vẽ hình và kí hiệu trên hình
Sau đó yêu cầu HS nêu GT, KL của bài toán.
GT
D ABC
D ABD: = 900, AD = AB
D ACE: = 900, AE = AC
AH ^ BC, DM ^ AH.
EN ^ AH
DE Ç MN = {O}
KL
DM = AH
OD = OE
- Để có DM = AH ta cần chỉ ra 2 tam giác nào bằng nhau ?
a) Xét D DMA và D AHB có:
 = = 900 (gt);
AD = AB (gt)
 + = 1800 - = 1800 - 900 = 900
 + = 900
Þ = (cùng phụ với )
Þ D DMA = D AHB (cạnh huyền-góc nhọn)
Þ DM = AH (cạnh tương ứng)
- Tương tự có 2 tam giác nào bằng nhau để được NE = AH ?
b) Chứng minh tương tự ta có
DNEA = D HAC
Þ NE = AH (cạnh tương ứng)
theo chứng minh trên ta có:
DM = AH ; NE = AH
Þ DM = NE
mà NE ^ AH, DM ^ AH
Þ NE // DM
Þ = (2 góc so le trong)
có = = 900
Þ D DMO = D ENO (g.c.g)
Þ OD = OE (cạnh tương ứng) hay MN đi qua trung điểm O của DE
- GV có thể bổ sung thêm câu hỏi (nếu còn thời gian).
Nếu D ABC có = 900. Hãy xét xem DABC và DAHC có những yếu tố nào bằng nhau hay không ?
GV đưa hình vẽ sẵn lên màn hình máy chiếu (có thể cho HS thảo luận nhóm)
B
A
C
H
HS phát biểu:
D ABC có = 900
D AHC có = 900
Þ = = 900
có góc C, cạnh AC chung.
Þ D ABC và D AHC có 2 góc bằng nhau không thỏa mãn điều kiện 2 góc kề với một cạnh tương ứng bằng nhau (theo g.c.g) nên 2 tam giác không bằng nhau.
c) Củng cố - luyện tập (15')
Kiểm tra 15'
Câu 1: Các khẳng định sau đúng hay sai ?
D ABC và D DEF có AB = DF, AC = DE, BC = FE
thì D ABC = D DEF (theo trường hợp c.c.c)
D MNI và D M’N’I’ có = , = , MI = M’I’
thì D MNI = D M’N’I’ (theo trường hợp g.c.g)
A
D
B
C
Câu 2: Cho hình vẽ bên có
AB = CD ; AD = BC ; = 850
Chứng minh D ABC = D CDA
Tính số đo của 
Chứng minh AB // CD
d) Hướng dẫn học bài ở nhà (1')
- Ôn tập kĩ lí thuyết về các trường hợp bằng nhau của tam giác.
- Làm các bài tập 57, 58, 59, 60, 61 Tr 105 SBT.
----------------------------------------------------
Ngày soạn: 7/1/2010
Ngày giảng: 
16/1/2010
lớp 7A4
15/1/2010
lớp 7A5
11/1/2010
lớp 7A6
Tiết 35 §6. TAM GIÁC CÂN
1. MỤC TIÊU
a) Kiến thức
Qua trình bày HS cần:
- Nắm được định nghĩa tam giác cân, tam giác vuông cân, tam giác đều: tính chất về góc của tam giác cân, tam giác vuông cân, tam giác đều.
b) Kĩ năng
- Biết vẽ một tam giác cân, một tam giác vuông cân. Biết chứng minh một tam giác là tam giác cân, tam giác vuông cân, tam giác đều. Biết vận dụng các tính chất của tam giác cân, t ... vuông lên tấm bìa hình vuông thứ hai như hình 122. (HS có thể dán hoặc dùng đinh mũ để đặt các tam giác lên tấm bìa. Có thể được thì thay bằng các hình tam giác bằng sắt dùng trên bảng nam châm).
Sau khi các HS gắn xong các tam giác vuông, GV nói.
- Ở hình 1, phần bìa không bị che lấp là một hình vuông có cạnh bằng c, hãy tính diện tích phần bìa đó theo c. 
HS: Diện tích phần bìa đó bằng c2
- Ở hình 2, phần bìa không bị che lấp gồm hai hình vuông có cạnh là a và b, hãy tính diện tích phần bìa đó theo a và b.
Diện tích phần bìa đó bằng a2 + b2
- Có nhận xét gì về diện tích phần bìa không bị che lắp ở hai hình? Giải thích ?
HS: diện tích phần bìa không bị che lấp ở hai hình bằng nhau vì diện tích phần bìa không bị che lấp ở hai hình đều bằng diện tích hình vuông trừ đi diện tích của bốn tam giác vuông.
- Từ đó rút ra nhận xét về quan hệ giữa c2 và a2 + b2.
- Vậy:
c2 = a2 + b2
- Hệ thức: c2 = a2 + b2 nói lên điều gì ?
HS: Hệ thức này cho biết trong tam giác vuông, bình phương độ dài cạnh huyền bằng tổng các bình phương độ dài hai cạnh góc vuông.
GV: Đó chính là nội dung định lí Pytago mà sau này sẽ được chứng minh.
GV yêu cầu vài HS đọc lại định lí Pytago.
Vài HS đọc to định lí Pytago
GV vẽ hình và tóm tắt định lí theo hình vẽ
A
B
C
 Định lí (SGK)
D ABC có = 900
Þ BC2 = AB2 + AC2
- GV đọc phần “Lưu ý ” SGK
- Yêu cầu HS làm ?3
Đưa đề bài lên màm hình.
HS trình bày miệng, GV ghi lại
a) D vuông ABC có:
 AB2 + BC2 = AC2 (đ/l Pytago) 
 AB2 + 82 = 102
 AB2 = 102 - 82
 AB2 = 36 = 62
 AB = 6 Þ x = 6
b) Tương tự EF2 = 12 + 12 = 2
 EF = hay x = 
HS ghi vào vở.
GV yêu cầu HS làm ?4
Vẽ tam giác ABC có AB = 3 cm , 
AC = 4 cm , BC = 5 cm.
Hãy dùng thước đo góc xác định số đo của góc BAC.
2) ĐỊNH LÝ PYTAGO ĐẢO (15')
HS toàn lớp vẽ hình vào vở.
A
B
C
5cm
4cm
3cm
Một HS thực hiện trên bảng.
 BAC = 900
GV: D ABC có AB2 + AC2 = BC2
(vì 32 + 42 + 52 = 25); bằng đo đạc ta thấy D ABC là tam giác vuông.
Người ta đã chứng minh được định lí Pytago đảo “Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương hai cạnh kia thì các tam giác đó là tam giác vuông”.
D ABC có BC2 = AB2 + AC2
Þ ABC = 900.
HS ghi bài
Định lí Pytago đảo (SGK).
D ABC có BC2 = AB2 + AC2
Þ BAC = 900
c) Củng cố – luyện tập (10')
- Phát biểu định lí Pytago.
- Phát biểu định lí Pytago đảo. So sánh hai định lí này.
HS phát biểu hai định lí (thuận và đảo Pytago).
Nhận xét giả thiết của định lí này là kết luận của định lí kia, kết luận của định lí này là giả thiết của định lí kia.
- Cho HS là Bài tập 53 Tr.131 SGK.
(Đề bài đưa lên màn hình)
HS hoạt động theo nhóm.
a) x2 = 52 + 122 (đ/l Pytago)
Yêu cầu HS hoạt động theo nhóm.
Một nửa lớp làm phần a và b.
Nửa lớp còn lại làm phần c và d.
x2 = 169
x2 = 132
x =13
b) Kết quả x = 
c) Kết quả x = 20
d) Kết quả x = 4
Đại diện hai nhóm trình bày bài làm.
GV kiểm tra bài làm một số nhóm.
HS lớp nhận xét bài làm của các nhóm.
- GV nêu bài tập:
Cho tam giác có độ dài ba cạnh là:
a) 6 cm, 8 cm, 10 cm.
b) 4 cm, 5 cm, 6 cm.
Tam giác nào là tam giác vuông ? Vì sao ?
a) Có 62 + 82 = 36 + 64 = 102
Vậy tam giác có 3 cạnh là 6 cm, 8 cm, 10 cm là tam giác vuông.
b) 42 + 52 = 41 ¹ 36 = 62
Þ D có ba cạnh là 4 cm, 5 cm, 6 cm không phải là tam giác vuông.
- Bài tập 54 Tr.131 SGK.
(Đề bài đưa lên màn hình)
- Kết quả chiều cao AB = 4 m
d) Hướng dẫn học bài ở nhà (3')
- Học thuộc định lí Pytago (thuận và đảo)
- Bài tập về nhà 55, 56, 57, 58 Tr 131, 132 SGK.
- Bài 82, 83, 86 Tr.108 SBT.
- Đọc mục “Có thể em chưa biết” Tr.132 SGK.
- Có thể tìm hiểu các cách kiểm tra góc vuông của người thợ xây dựng (thợ nề, thợ mộc).
------------------------------------
Ngày soạn: 15/1/2010
Ngày giảng: 
23/1/2010
lớp 7A4
22/1/2010
lớp 7A5
18/1/2010
lớp 7A6
Tiết 38 LUYỆN TẬP (T1)
1. MỤC TIÊU
a) Kiến thức
- Củng cố định lí Pytago và định lí Pytago đảo.
- Vận dụng định lí Pytago để tính độ dài một cạnh của tam giác vuông và vận dụng định lí Pytago đảo để nhận biết một tam giác là tam giác vuông.
b) Kĩ năng
- Rèn kĩ năng vẽ hình, làm bài tập.
c) Thái độ
- Hiểu và biết vận dụng kiến thức học trong bài vào thực tế.
2. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH
a) Giáo viên
- Giáo án, SGK, bảng phụ, đồ dùng dạy học
 - Một sợi dây có thắt nút (hoặc đánh dấu) thành 12 đoạn thẳng bằng nhau, một êke có tỉ lệ cạnh là 3 ; 4; 5 để minh hoạ cho mục “Có thể em chưa biết” Tr.132 SGK.
 - Thước thẳng, êke, compa, phấn màu, bút dạ.
 - In đề bài 58 (hình 130a) Tr.132 SGK lên giấy trong để các nhóm hoạt động nhóm.
b) Học sinh
- Học bài, làm đủ bài tập và đọc trước mục “Có thể em chưa biết"
- Thước thẳng, êke, compa, bút dạ.
3. TIẾN TRÌNH DẠY HỌC
a) Kiểm tra bài cũ (11')
GV nêu yêu cầu kiểm tra.
HS1: Phát biểu định lí Pytago. Vẽ hình và viết hệ thức minh họa.
Hai HS lên bảng kiểm tra.
A
B
C
HS1: Phát biểu định lí Pytago.
D ABC có = 900
 Þ AB2 + AC2 = BC2
Chữa bài tập 55 Tr.131 SGK
(Đề bài đưa lên màn hình)
A
B
C
4
1
Chữa bài tập 55 Tr.131 SGK
D vuông ABC ( = 900) có:
AB2 + AC2 = BC2
(đ/l Pytago)
12 + AC2 = 42
AC2 = 16 – 1
AC2 = 15
AC = 
AC » 3,9 (m)
Trả lời: chiều cao của bức tường » 3,9 m.
HS2: Phát biểu định lí Pytago đảo.
Vẽ hình minh họa và viết hệ thức.
HS2: Phát biểu định lí Pytago đảo.
A
B
C
p
D ABC có BC2 = AB2 + AC2
Þ = 900
Chữa bài tập 56 (a, c) Tr.131 SGK.
(Đề bài đưa lên màn hình)
Chữa bài tập 56 SGK.
Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
a) 9 cm, 15 cm, 12 cm
c) 7 m, 7 m, 10 m.
a) Tam giác có ba cạnh là:
9 cm, 15 cm, 12 cm
92 + 122 = 81 + 144 = 225
152 = 225
Þ 92 + 122 = 152
Vậy tam giác này là tam giác vuông theo định lí Pytago đảo.
c) Tam giác có ba cạnh là: 7m, 7m, 10m.
72 + 72 = 49 + 49 = 98
102 = 100
Þ 72 + 72 ¹ 102
Vậy tam giác này không phải là tam giác vuông.
GV nhận xét, cho điểm.
HS lớp nhận xét bài làm của bạn
* Đặt vấn đề: Chúng ta sẽ củng cố các kiến thức của bài trước thông qua việc làm một số bài tập
b) Bài mới
Hoạt động của GV
Hoạt động của HS
Bài 57 Tr.131 SGK
(Đề bài đưa lên màn hình)
LUYỆN TẬP (25')
HS trả lời: Lời giải của bạn Tâm là sai. Ta phải so sánh bình phương của cạnh lớn nhất với tổng bình phương hai cạnh còn lại.
82 + 152 = 64 + 225 = 289
172 = 289
Þ 82 + 152 = 172
Þ Vậy D ABC là tam giác vuông
GV: Em có biết D ABC có góc nào vuông không ?
A
B
C
D
5
10
HS: Trong ba cạnh, cạnh AC = 17 là cạnh lớn nhất. Vậy D ABC có = 900
Bài 86 Tr.108 SBT.
Tính đường chéo của một mặt bàn hình chữ nhật có chiều dài 10dm, chiều rộng 5 dm.
HS vẽ hình
GV yêu cầu một HS lên bảng vẽ hình.
- Nêu cách tính đường chéo của một mặt bàn hình chữ nhật.
- HS nêu cách tính
         ABC có:
BD2 = AB2 + AD2 (đ/l Pytago)
BD2 = 52 + 102
BD2 = 125
Þ BD = » 11,2 (dm)
Bài tập 87 Tr.108 SBT
(Đề bài đưa lên bảng phụ)
GV yêu cầu một HS lên bảng vẽ hình và ghi GT, KL.
HS toàn lớp vẽ hình vào vở
Một HS lên bảng vẽ hình, ghi GT, KL.
 D
B
C
A
GT
AC ^ BD tại O
OA = OC
OB = OD
AC = 12 cm
BD = 16 cm
KL
Tính AB, BC, CD, DA.
- Nêu cách tính độ dài AB ?
HS:     AOB có:
AB2 = AO2 + OB2 (đ/l Pytago)
AO = OC = = 6 cm
OB = OD = = 8 cm
Þ AB2 = 62 + 82
 AB2 = 100
Þ AB = 10 (cm)
Tính tương tự
Þ BC = CD = DA = AB = 10 cm
Bài 88 Tr.108 SBT
Tính độ dài các cặp góc vuông của một tam giác vuông cân có cạnh huyền bằng:
a) 2 cm
b) cm
Một HS lên bảng vẽ tam giác vuông cân.
A
x
a
GV gợi ý: Gọi độ dài cạnh góc vuông của tam giác vuông cân là x (cm), độ dài cạnh huyền là a (cm).
Theo định lí Pytago ta có đẳng thức nào ?
a) Thay a = 2, Tính x.
HS: x2 + x2 = a2
 2x2 = a2
a) 2x2 = 22
 x2 = 2
 x = (cm)
b) Thay a = , Tính x
b) 2x2 = ()2
 2x2 = 22
 x2 = 1
 x = 1 (cm)
Bài 58 Tr.132 SGK.
GV yêu cầu HS hoạt động nhóm
(Đề bài in trên giấy trong phát cho các nhóm)
Các nhóm HS hoạt động.
20dm
21dm
4dm
d
Trong lúc anh Nam dựng tủ cho đứng thẳng, tủ có bị vướng vào trần nhà không ?
Bài làm 
GV quan sát hoạt động của các nhóm, có thể gợi ý khi cần thiết.
Gọi đường chéo của tủ là d.
Ta có: d2 = 202 + 42 (đ/l Pytago)
 d2 = 400 + 16
 d2 = 416
Þ d = » 20,4 (dm)
Chiều cao của nhà là 21 dm.
Þ Khi anh Nam dựng tủ, tủ không bị vướng vào trần nhà.
Đại diện một nhóm trình bày lời giải.
GV nhận xét việc hoạt động của các nhóm và bài làm
HS lớp nhận xét, góp ý
c) Củng cố - luyện tập (7')
GV: Hôm trước, cô có yêu cầu các em tìm hiểu cách kiểm tra góc vuông của các bác thợ nề, thợ mộc, bạn nào đã tìm hiểu được ?
GIỚI THIỆU MỤC “CÓ THỂ EM CHƯA BIẾT”
HS: Có thể nói các bác thợ nề dùng êke và ống thăng bằng bọt nước để kiểm tra, cũng có thể có em tìm được các bác thợ đã dùng tam giác có độ dài ba cạnh bằng 3, 4, 5 đơn vị để kiểm tra.
Sau đó GV đưa các hình 131, hình 132 SGK lên bảng phụ, dùng sợi dây có thắt nút 12 đoạn bằng nhau và êke gỗ có tỉ lệ cạnh là 3, 4, 5 để minh họa cụ thể (nên thắt nút ở dây phù hợp với độ dài của êke).
HS quan sát GV hướng dẫn
GV đưa tiếp hình 133 SGK lên bảng và trình bày như SGK.
GV đưa thêm hình phản ví dụ
A
B
C
4
<5
<90o
>5
C
A
B
4
>90o
GV yêu cầu HS nêu nhận xét.
HS nhận xét:
+ Nếu AB = 3 ; AC = 4 ; BC = 5
 thì = 900
+ Nếu AB = 3 ; AC = 4 ; BC < 5
 thì < 900
+ Nếu AB = 3 ; AC = 4 ; BC > 5
 thì > 900
d) Hướng dẫn học bài ở nhà (2')
- Ôn tập định lí Pytago (thuận , đảo).
- Bài tập 59, 60, 61 Tr.133 SGK, bài 89 Tr. 108 SBT.
- Đọc “Có thể em chưa biết” Ghép hai hình vuông thành một hình vuông Tr.134 SGK. Theo hướng dẫn của SGK, hãy thực hiện cắt ghép từ hai hình vuông thành một hình vuông.

Tài liệu đính kèm:

  • docTIET 33 - 38.doc