-HS hiểu thế nào là hai đường thẳng vuông góc với nhau.
-Công nhận tính chất: Có duy nhất một đường thẳng b đi qua A và ba.
-Hiểu thế nào là đường trung trực của một đoạn thẳng.
- Biết vẽ đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
-Biết vẽ đường trung trực của một đoạn thẳng.
-HS bước đầu tập suy luận.
B/- CHUẨN BỊ
GV: Thước thẳng, bảng phụ.
HS: On tập cách vẽ góc.
C/- PHƯƠNG PHÁP
-Đặt vấn đề giải quyết vấn đề, phát huy tính tích cực hoạt động của HS.
-Đàm thoại, hỏi đáp.
D/- TIẾN TRÌNH BI DẠY
TUẦN 02 Tiết 3: Bài 2: HAI ĐƯỜNG THẲNG VUƠNG GĨC A/- MỤC TIÊU -HS hiểu thế nào là hai đường thẳng vuông góc với nhau. -Công nhận tính chất: Có duy nhất một đường thẳng b đi qua A và b^a. -Hiểu thế nào là đường trung trực của một đoạn thẳng. - Biết vẽ đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước. -Biết vẽ đường trung trực của một đoạn thẳng. -HS bước đầu tập suy luận. B/- CHUẨN BỊ GV: Thước thẳng, bảng phụ. HS: Oân tập cách vẽ góc. C/- PHƯƠNG PHÁP -Đặt vấn đề giải quyết vấn đề, phát huy tính tích cực hoạt động của HS. -Đàm thoại, hỏi đáp. D/- TIẾN TRÌNH BÀI DẠY Hoạt động của Thầy Hoạt động của Trị Ghi bảng Hoạt động 1: Thế nào là hai đường thẳng vuơng gĩc (10’) -GV yêu cầu: Vẽ hai đường thẳng xx’ và yy’ cắt nhau và trong các góc tạo thành có một góc vuông. Tính số đo các góc còn lại. -GV gọi HS lên bảng thực hiện, các HS khác làm vào vở. -GV giới thiệu hai đường thẳng xx’ và yy’ trên hình gọi là hai đường thẳng vuông góc. -GV gọi HS phát biểu và ghi bài. -GV giới thiệu các cách gọi tên. -HS lên bảng vẽ hình Vì = (hai góc đối đỉnh) => = 900 Vì kề bù với nên = 900 Vì đối đỉnh với nên = = 900 -HS phát biểu định nhĩa về hai đường thẳng vuông góc. 1). Thế nào là hai đường thẳng vuông góc: Hai đường thẳng xx’ và yy’ cắt nhau và trong các góc tạo thành có một góc vuông được gọi là hai đường thẳng vuông góc. Kí hiệu là xx’^yy’. Hoạt động 2: Vẽ hai đường thẳng vuơng gĩc (13’) ?4 Cho O và a, vẽ a’ đi qua O và a’^a. -GV cho HS xem SGK và phát biểu cách vẽ của hai trường hợp -GV: Các em vẽ được bao nhiêu đường a’ đi qua O và a’^a. -> Rút ra tính chất. -HS xem SGK và phát biểu. - Chỉ một đường thẳng a’. 2). Vẽ hai đường thẳng vuông góc: Vẽ a’ đi qua O và a’^a. Có hai trường hợp: *)TH1: Điểm OỴa (Hình 5 SGK/85) *)TH2: Ọa. (Hình 6 SGK/85) Tính chất: Có một và chỉ một đường thẳng a’ đi qua O và vuông góc với đường thẳng a cho trước. Hoạt động 3: Đường trung trực của đoạn thẳng (10’) -GV yêu cầu HS: Vẽ AB. Gọi I là trung điểm của AB. Vẽ xy qua I và xy^AB. ->GV giới thiệu: xy là đường trung trực của AB. -GV gọi HS phát biểu định nghĩa. -HS phát biểu định nghĩa. 3). Đường trung trực của đoạn thẳng: Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng ấy. A, B đối xứng nhau qua xy Hoạt động 4: Luyện tập củng cố (10’) Bài 11: GV cho HS xem SGK và đứng tại chỗ đọc. Bài 12: Câu nào đúng, câu nào sai: a) Hai đường thẳng vuông góc thì cắt nhau. b) Hai đường thẳng cắt nhau thì vuông góc. Bài 14: Cho CD = 3cm. Hãy vẽ đường trung trực của đoạn thẳng ấy. GV gọi HS nên cách vẽ và một HS lên bảng trình bày. Bài 12: Câu a đúng, câu b sai. Minh họa: Bài 14: Vẽ CD = 3cm bằng thước có chia vạch. - Vẽ I là trung điểm của CD. - Vẽ đường thẳng xy qua I và xy^CD bằng êke. Hoạt động 5: Dặn dị (2’) -Học bài, làm các bài 13 SGK/86; 10,14,15 SBT/75. -Chuẩn bị bài luyện tập. Tiết 4: LUYỆN TẬP (BÀI 2) A/- MỤC TIÊU - HS được củng cố lại các kiến thức về hai đường thẳng vuông góc. - Rèn luyện kĩ năng vẽ hình, vẽ bằng nhiều dụng cụ khác nhau. - Rèn tính cẩn thận, chính xác. B/- CHUẨN BỊ GV: Thước thẳng, bảng phụ HS: Học thuộc định nghĩa , tính chất của hai đường thẳng vuông góc, đường trung trực của đoạn thẳng. C/- PHƯƠNG PHÁP - Phát huy tính chủ động, sáng tạo của HS. - Giúp HS tìm nhiều cách giải khác nhau. D/- TIẾN TRÌNH BÀI DẠY Hoạt động của Thầy Hoạt động của Trị Ghi bảng Hoạt động 1: Kiểm tra bài cũ (6’) HS 1: -Thế nào là hai đường thẳng vuông góc. -Sữa bài 14 SBT/75 HS 2: -Phát biểu định nghĩa đường trung trực của đoạng thẳng. -Sữa bài 15 SBT/75 Hoạt động 2: Luyện tập (30’) -GV hướng dẫn HS đối với hình a, kéo dài đường thẳng a’ để a’ và a cắt nhau. -GV yêu cầu HS vẽ hình theo nội dung của bài toán: -Vẽ . lấy A trong ; Vẽ d1 qua A và d1^Ox tại B; Vẽ d2 qua A và d2^Oy tại C. -GV cho HS làm vào tập và nhắc lại các dụng cụ sử dụng cho bài này. -GV yêu cầu HS đọc nội dung bài tập 20. -GV gọi 2 HS lên bảng, mỗi em vẽ một trường hợp. -GV gọi các HS khác nhắc lại cách vẽ trung trực của đoạn thẳng. -GV gọi HS khác nhận xét bài làm của HS. -HS dùng êke để kiểm tra và trả lời. -HS nhắc lại các dụng cụ vẽ hình. -HS đọc bài toán. -HS lên bảng làm. -HS nhận xét bài làm của bạn 1.Dạng1: Kiểm tra hai đường thẳng vuông góc Bài 17 (SGK-Tr 87) -Hình a: a’ không ^a -Hình b: a^a’ -Hình c: a^a’ 2. Dạng 2: Vẽ hình Bài 18 (SGK-Tr ) Bài 20 (SGK-Tr ) TH1: A, B, C thẳng hàng. -Vẽ AB = 2cm. -Trên tia đối của tia BA lấy điểm C: BC = 3cm. -Vẽ I, I’ là trung điểm của AB, BC. -Vẽ d, d’ qua I, I’ và d^AB, d’^BC. => d, d’ là trung trực của AB, BC. TH2: A,B,C không thẳng hàng. -Vẽ -Vẽ . -Vẽ I, I’ là trung điểm của AB, BC. -Vẽ d, d’ đi qua I, I’ và . =>d, d’ là trung trực của AB và BC. Hoạt động 3: Nâng cao (7’) Đề bài: Vẽ = 900. Vẽ tia Oz nằm giữa hai tia Ox và Oy. Trên nữa mặt phẳng bờ chứa tia Ox và không chứa Oz, vẽ tia Ot: = . Chứng minh Oz^Ot. -GV giới thiệu cho HS phương pháp chứng minh hai đường thẳng vuông góc và cho HS suy nghĩ làm bài. -GV gọi một HS lên trình bày. -HS quan sát GV chứng minh. -HS lên bảng trình bày. Giải: Vì tia Oz nằm giữa hai tia Ox và Oy. Mà (gt) Hoạt động 4: Dặn dị (2’) -Xem lại cách trình bày của các bài đã làm, ôn lại lí thuyết. -Chuẩn bị bài 3: Các góc tạo bởi một đường thẳng cắt hai đường thẳng. Ký Duyệt Tổ duyệt Ban giám hiệu Ngày tháng năm 2009 Ngày tháng năm 2009
Tài liệu đính kèm: