Giáo án Phụ đạo môn Toán Lớp 7 - Chủ đề 11: Cộng, trừ đa thức một biến - Năm học 2010-2011

Giáo án Phụ đạo môn Toán Lớp 7 - Chủ đề 11: Cộng, trừ đa thức một biến - Năm học 2010-2011

I. MỤC TIÊU:

1. Kiến thức : Biết cộng trừ đa thưc một biến

2. Kỹ năng : Rèn luyện kĩ năng sắp xếp đa thức theo luỹ thừa tăng hoặc giảm của biến và tính tổng, hiệu các đa thức.

3. Thái độ :

II. CHUẨN BỊ:

- GV : Phấn mầu

- HS :

 

doc 5 trang Người đăng danhnam72p Lượt xem 532Lượt tải 1 Download
Bạn đang xem tài liệu "Giáo án Phụ đạo môn Toán Lớp 7 - Chủ đề 11: Cộng, trừ đa thức một biến - Năm học 2010-2011", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn : 15/04/2011
Ngày dạy : 20/04/2011
Chủ đề 11 :
Cộng , trừ đa thức một biến
i. Mục tiêu:
1. Kiến thức : Biết cộng trừ đa thưc một biến
2. Kỹ năng : Rèn luyện kĩ năng sắp xếp đa thức theo luỹ thừa tăng hoặc giảm của biến và tính tổng, hiệu các đa thức.
3. Thái độ : 
ii. Chuẩn bị: 
- GV : Phấn mầu 
- HS : 
iii. Tiến trình bài dạy :
Bài 1: Tìm bậc của đa thức sau:
a. 5x6 - 2x5 + x4 - 3x3 - 5x6 + x2 + 5
b. 15 - 2x2 + x3 + 2x2 - x3 + x
Giải:
a. - 2x5 + x4 - 3x3 + x2 + 5 có bậc là 5
b. 15 + x có bậc là 1
Bài 2:
a. Viết các đa thức sau theo luỹ thừa tăng của biến và tìm bậc của chúng.
	f(x) = 5 - 6x4 + 2x3 + x + 5x4 + x2 + 3x3
	g(x) = x5 + x4 - 3x + 7 - 2x4 - x5
b. Viết các đa thức sau theo luỹ thừa giảm dần của biến và tìm hệ số bậc cao nhất, hệ số tự do của chúng.
	h(x) = 5x2 + 9x5 - 7x4 - x2 - 6x5 + x3 + 75 - x
	g(x) = 2x3 + 5 - 7x4 - 6x3 + 3x2 - x5
Giải:
a. Ta có:
	f(x) = 5 + x + x2 + 5x3 - x4 có bậc là 4
	g(x) = 7 - 3x - x4 có bậc là 4
b. Ta có: h(x) = 3x5 - 7x4 + x3 + 4x2 - x + 75
Hệ số bậc cao nhất của h(x) là 3, hệ số tự do là 75.
	g(x) = - x5 - 7x4 - 4x3 + 3x2 + 5
Hệ số bậc cao nhất của g(x) là - 1, hệ số tự do là 5.
Bài 3: Đơn giản biểu thức sau:
a. (a2 - 0,45a + 1,2) + (0,8a2 - 1,2a) - (1,6a2 - 2a)
b. (y2 - 1,75y - 3,2) - (0,3y2 + 4) - (2y - 7,2)
Giải:
a. a2 + 0,8a2 - 1,6a2 - 0,45a - 1,2a + 2a + 1,2 = 0,2a2 + 0,35a + 1,2
b. y2 - 0,3y2 - 1,75y - 2y - 3,2 + 7,2 = 0,7y2 - 3,75y + 4
Bài 4: a. Chứng minh rằng hiệu hai đa thức
0,7x4 + 0,2x2 - 5 và - 0,3x4 + x2 - 8
luôn luôn dương với mọi giá trị thực của x.
b. Tính giá trị của biểu thức
(7a3 - 6a3 + 5a2 + 1) + (5a3 + 7a2 + 3a) - (10a3 + a2 + 8a) với a = - 0,25
Giải:
a. Ta có:
(0,7x4 + 0,2x2 - 5 ) - (0,3x4 + x2 - 8)
= 0,7x4 + 0,2x2 - 5 + 0,3x4 - x2 + 8
= x4 + 3 
b. 7a3 - 6a3 + 5a2 + 1 + 5a3 + 7a2 + 3a - 10a3 - a2 - 8a
= - 4a3 + 11a2 - 5a + 1
Với a = - 0,25 thì giá trị của biểu thức là:
4(- 0,25)3 + 11. (- 0,25)2 - 5.(- 0,25) + 1
= 4(- 0,015625) + 11 (- 0,0625) - 1,25 + 1
= 0,0625 - 0,6875 - 0,25 = - 0,875
Bài 5: Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến.
a. 
b. 1,7 - 12a2 - (2 - 5a2 + 7a) + (2,3 + 7a2 + 7a)
Giải:
Ta có:
a. x2 - 0,4x - 0,5 - 1 + x - 0,6x2 = - 1,5
b. 1,7 - 12a2 - 2 + 5a2 - 7a + 2,3 + 7a2 + 7a
= (- 12a2 + 5a2 + 7a2) - 7a + 7a + 1,7 - 2 + 2,3 = 2
Bài 6: Cho các đa thức
	f(x) = 3 + 3x - 1 + 3x4; g(x) = - x3 + x2 - x + 2 - x4
 Tính f(x) + g(x); f(x) - g(x)
Giải: f(x) + g(x) = 3 + 3x - 1 + 3x4 + (- x3 + x2 - x + 2 - x4)
	 = 2x4 + x2 + 2x - 1
Tương tự: f(x) - g(x) = 4x4 + 2x3 - x2 + 4x - 3
Bài 7: tính tổng f(x) + g(x) và hiệu f(x) - g(x) với
a. f(x) = 10x5 - 8x4 + 6x3 - 4x2 + 2x + 1 + 3x6
 g(x) = - 5x5 + 2x4 - 4x3 + 6x2 - 8x + 10 + 2x6
b. f(x) = 15x3 + 7x2 + 3x - + 3x4
 g(x) = - 15x3 - 7x2 - 3x + + 2x4
Giải:
a. Ta có f(x) + g(x) = 6x6 + 5x5 - 6x4 + 2x3 + 2x2 - 6x + 11
 f(x) - g(x) = x6 + 15x5 - 10x4 + 10x3 - 10x2 + 10x - 9
b. f(x) + g(x) = 5x4
 f(x) - g(x) = x4 + 30x3 + 14x2 + 6x - 1
Bài 8: Cho các đa thức
	f(x) = 2x4 - x3 + x - 3 + 5x5
	g(x) = - x3 + 5x2 + 4x + 2 + 3x5
	h(x) = x2 + x + 1 + x3 + 3x4
Hãy tính: f(x) + g(x) + h(x); f(x) - g(x) - h(x)
Giải:
f(x) + g(x) + h(x) = 8x5 + 5x4 + 6x2 + 6x
f(x) - g(x) - h(x) = 2x5 - x4 - 2x3 - 6x2 - 4x - 6
Bài 9: Đơn giản biểu thức:
a. (0,5a - 0,6b + 5,5) - (- 0,5a + 0,4b) + (1,3b - 4,5)
b. (1 - x + 4x2 - 8x3) + (2x3 + x2 - 6x - 3) - (5x3 + 8x2)
Giải:
0,5a - 0,6b + 5,5 + 0,5a - 0,4b + 1,3b - 4,5 = a + 0,3b + 1
1 - x + 4x2 - 8x3 + 2x3 + x2 - 6x - 3 - 5x3 - 8x2 = - 11x3 - 3x2 - x - 2
Bài 10: Chứng minh rằng: A + B - C = C - B - A
Nếu A = 2x - 1; B = 3x + 1 và C = 5x
Giải: 
A + B - C = 2x - 1 + 3x + 1 - 5x = 5x - 5 - 1 + 1 = 0
C - B - A = 5x - 3x + 1 - 2x - 1 = 5x - 3x - 2x + 1 - 1 = 0
Vậy A + B - C = C - B - A
Bài 11: Chứng minh rằng hiệu hai đa thức 
 và 0,75x4 - 0,125x3 - 2,25x2 + 0,4x - luôn nhận giá trị dương.
Giải:
Ta có: () - (0,75x4 - 0,125x3 - 2,25x2 + 0,4x - )= 
= x4 + x2 + 1 1 x
Bài 12: Cho các đa thức
P(x) = x2 + 5x4 - 3x3 + x2 + 4x4 + 3x3 - x + 5
Q(x) = x - 5x3 - x2 - x4 + 4x3 - x2 + 3x - 1
a. Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm của biến.
b. Tính P(x) + Q(x); P(x) - Q(x)
Giải:
a. P(x) = 5 - x + 2x2 + 9x4
 Q(x) = - 1 + 4x - 2x2 - x3 - x4
b. P(x) + Q(x) = (9x4 + 2x2 - x + 5) + (x4 - x3 - 2x2 + 4x - 1) = 10x4 - x3 + 3x + 4
 P(x) - Q(x) = (9x4 + 2x2 - x + 5) - (x4 - x3 - 2x2 + 4x - 1) = 
 = 9x4 + 2x2 - x + 5 - x4 + x3 + 2x2 - 4x + 1 = 8x4 + x3 + 4x2 - 5x + 6
Bài 13: Cho hai đa thức; chọn kết quả đúng.
P = 3x3 - 3x2 + 8x - 5 và Q = 5x2 - 3x + 2
a. Tính P + Q
A. 3x3 - 2x2 + 5x - 3;	C. 3x3 - 2x2 - 5x - 3
B. 3x3 + 2x2 + 5x - 3;	D. 3x2 + 2x2 - 5x - 3
b. Tính P - Q
A. 3x3 - 8x2 - 11x - 7;	C. 3x3 - 8x2 + 11x - 7
B. 3x3 - 8x2 + 11x + 7;	D. 3x2 + 8x2 + 11x - 7
Giải: a. Chọn C;	B.Chọn B
Bài 14: Tìm đa thức A. chọn kết quả đúng.
a. 2A + (2x2 + y2) = 6x2 - 5y2 - 2x2y2
A. A = 2x2 - 3y2 + x2y2;	C. A = 2x2 - 3y2 - x2y2
B. A = 2x2 - 3y2 + 5x2y2;	D. 2x2 - 3y2 - 5 x2y2
b. 2A - (xy + 3x2 - 2y2) = x2 - 8y2 + xy
A. A = x2 - 5y2 + 2xy;	C. A = 2x2 - 5y2 + 2xy
B. A = x2 - 5y2 + xy;	D. A = 2x2 - 5y2 + xy
Giải: a. Chọn C
Ta có: 2A + (2x2 + y2) = 6x2 - 5y2 - 2x2y2
	2A = (6x2 - 5y2 - 2x2y2) - (2x2 + y2) = 4x2 - 6y2 - 2x2y2
	A = 2x2 - 3y2 - x2y2
Vậy đa thức cần tìm là: A = 2x2 - 3y2 - x2y2
b. Chọn D
Ta có 2A - (xy + 3x2 - 2y2) = x2 - 8y2 + xy
	2A = (x2 - 8y2 + xy) + (xy + 3x2 - 2y2) = 4x2 - 10y2 + 2xy
	A = 2x2 - 5y2 + xy
Vậy đa thức cần tìm là A = 2x2 - 5y2 + xy
Bài 15: Cho hai đa thức sau:
	f(x) = a0xn + a1xn-1 + a2xn-2 + ..... + an-1x + an
	g(x) = b0 xn + b1 xn-1 +b2xn-2 +,,,, + bn-1x + bn
a. Tính f(x) + g(x)
A. f(x) + g(x) = (a0 + b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an + bn
B. f(x) + g(x) = (a0 + b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an - bn
C. f(x) + g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)x + an + bn
D. f(x) + g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)x - an + bn
b. Tính f(x) - g(x)
A. f(x) - g(x) = (a0 - b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an + bn
B. f(x) - g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)+ an - bn
C. f(x) - g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)x + an + bn
D. f(x) - g(x) = (a0 + b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an - bn
Giải: a. Chọn A
Ta có: f(x) = a0xn + a1xn-1 + a2xn-2 + ..... + an-1x + an
	g(x) = b0 xn + b1 xn-1 +b2xn-2 +,,,, + bn-1x + bn
 f(x) + g(x) = (a0 + b0)xn + (a1 + b1)xn-1 + ... + (an-1+ bn-1)x + an + bn
b.Chọn B
Ta có: f(x) = a0xn + a1xn-1 + a2xn-2 + ..... + an-1x + an
	g(x) = b0 xn + b1 xn-1 +b2xn-2 +,,,, + bn-1x + bn
f(x) - g(x) = (a0 - b0)xn + (a1 - b1)xn-1 + ... + (an-1- bn-1)+ an - bn

Tài liệu đính kèm:

  • docgiao_an_phu_dao_mon_toan_lop_7_chu_de_11_cong_tru_da_thuc_mo.doc