Giáo án toán 7 Giáo viên: Huỳnh Thanh Lâm
Ngày soạn: 10/08/2018 Ngày dạy:
Tiết: 1 Tuần: 1
CHƯƠNG I: SỐ HỮU TỈ. SỐ THỰC
§1. TẬP HỢP Q CÁC SỐ HỮU TỶ
I. MỤC TIÊU
1. Kiến thức:
- Học sinh hiểu được khái niệm số hữu tỉ
- Học sinh biết cách biểu diễn số hữu tỉ trên trục số.
2. Kĩ năng:
- Nhận biết được số hữu tỉ và biết biểu diễn số hữu tỉ trên trục số.
3. Thái độ
- Chú ý nghe giảng và làm theo các yêu cầu của giáo viên.
- Tích cực trong học tập, cĩ ý thức trong nhĩm.
II. CHUẨN BỊ
* GV: SGK, bảng phụ, phấn mầu.
* HS: SGK, bảng nhĩm, thước kẻ.
III. TIẾN TRÌNH LÊN LỚP
1. Ổn định tổ chức:
2. Kiểm tra bài cũ:
Câu 1: Viết tập hợp các số tự nhiên và tập hợp các số nguyên.
N {0;1;2;3;4;...}
Đáp án:
Z {...; 3; 2; 1;0;1;2;3;...}
Câu 2: Tìm các tử mẫu của các phân số cịn thiếu:
3 .... .... 15
a)3
.... 2 3 ....
1 .... ....
b) 0,5
.... 2 4
0 .... ....
c)0
1 3 10
5 19 .... 30
d)2
7 7 7 ....
3. Bài mới:
* Đặt vấn đề: Chúng ta đã biết về tập hợp số tự nhiên, tập hợp số nguyên. Vậy tập hợp
những số như ở câu 2 thuộc tập hợp nào? Để biết được ta vào bài hơm nay.
Hoạt động của GV và HS Nội dung
Hoạt động 1 : Số hữu tỉ 1. Số hữu tỉ
*GV : Hãy viết các phân số bằng nhau của Giáo án toán 7 Giáo viên: Huỳnh Thanh Lâm
5 3 6 9
các số sau: 3; -0,5; 0; 2 .Từ đĩ cĩ nhận 3 ...
7 1 2 3
xét gì về các số trên ?. 1 1 2
0,5 ...
*HS : Thực hiện. 2 2 4
0 0 0
0 ...
*GV : Nhận xét và khẳng định : 1 2 3
5 19 19 38
Các phân số bằng nhau là cách viết khác 2 ...
nhau của cùng một số, số đĩ được gọi là số 7 7 7 14
hữu tỉ. Các phân số bằng nhau là cách viết khác
5 nhau của cùng một số, số đĩ được gọi là
Như vậy các số 3; -0,5; 0; 2 đều là các số
7 số hữu tỉ.
5
hữu tỉ . Như vậy các số 3; -0,5; 0; 2 đều là các
- Thế nào là số hữu tỉ ?. 7
*HS : Trả lời. số hữu tỉ .
*GV : Nhận xét và khẳng định :
Số hữu tỉ là số viết được dưới dạng phân Vậy:
a
số với a, b Z, b 0
b Số hữu tỉ là số viết được dưới dạng
a
Tập hợp các số hữu tỉ được kí hiệu Q. phân số với a, b Z, b 0
*HS : Chú ý nghe giảng và ghi bài. b
*GV : Yêu cầu học sinh làm ?1. Tập hợp các số hữu tỉ được kí hiệu Q.
1
Vì sao các số 0,6; -1,25; 1 là các số hữu
3 ?1.
1
tỉ ? Các số 0,6; -1,25; 1 là các số hữu tỉ
*HS : Thực hiện. 3
Vì:
6 12 24
0,6 ...
10 20 40
125 5
1,25 ...
100 4
1 4 8
*GV : Nhận xét và yêu cầu học sinh làm ?2. 1 ...
Số nguyên a cĩ phải là số hữu tỉ khơng ?. Vì 3 3 6
sao ?. ?2.
*HS : Thực hiện. Số nguyên a là số hữu tỉ vì:
a 3a 100a
*GV : Nhận xét. a ...
Hoạt động 2: Biểu diễn số hữu tỉ trên 1 3 100
trục số Giáo án toán 7 Giáo viên: Huỳnh Thanh Lâm
*GV : Yêu cầu học sinh làm ?3. 2. Biểu diễn số hữu tỉ trên trục số.
Biểu diễn các số nguyên -1; 1; 2 trên trục số
*HS : Thực hiện. ?3. Biểu diễn các số nguyên -1; 1; 2 trên
trục số
*GV : - Nhận xét.
Cùng học sinh xét ví dụ 1:
5 Ví dụ 1 :
Biểu diễn số hữu tỉ lên trục số.
5
4 Biểu diễn số hữu tỉ lên trục số
Hướng dẫn: 4
- Chia đoạn thẳng đơn vị( chẳng hạn
đoạn từ 0 đến 1 ) thành 4 đoạn bằng
nhau, lấy một đoạn làm đơn vị mới
1
thì đơn vị mới bằng đơn vị cũ.
4
5
- Số hữu tỉ được biểu diễn bởi điểm
4
M nằm bên phải điểm 0 và cách điểm
0 một đoạn là 5 đơn vị.
*HS : Chú ý và làm theo hướng dẫn của
giáo viên.
*GV : Yêu cầu học sinh làm ví dụ 2.
*HS : Thực hiện.
*GV : Nhận xét.
Hoạt động 3: So sánh hai số hữu tỉ .
*GV : Yêu cầu học sinh làm ví dụ
So sánh các phân số : Ví dụ 2. (SGK – trang 6)
2 4
và ; 4 và 13 ; 18 và 1818
3 - 5 9 18 31 3131
*HS : Thực hiện: 3. So sánh hai số hữu tỉ .
2 10 4 4 12
*ý 1) ;
3 15 5 5 15 Ví dụ
10 12
Khi đĩ ta thấy: So sánh các cặp phân số :
15 15 2 4
và ; 4 và 13 ; 18 và 1818
2 4
Do đĩ: 3 - 5 9 18 31 3131
3 - 5 *ý 1) Ta cĩ: Giáo án toán 7 Giáo viên: Huỳnh Thanh Lâm
4 4.2 8 2 10 4 4 12
*ý 2) Ta cĩ ;
9 9.2 18 3 15 5 5 15
8 13 4 13
Khi đĩ nên 10 12
18 18 9 18 Khi đĩ ta thấy:
18 18.101 1818 15 15
2 4
*ý 3) Ta cĩ 31 31.101 3131 Do đĩ:
1818 1818 3 - 5
4 4.2 8
3131 3131 *ý 2) Ta cĩ
18 1818 9 9.2 18
Nên 8 13 4 13
31 3131 Khi đĩ nên
*GV : Nhận xét và khẳng định : 18 18 9 18
18 18.101 1818
Với hai số hữu tỉ x và y ta luơn cĩ :
hoặc x = y hoặc x y. Ta cĩ thể *ý 3) Ta cĩ 31 31.101 3131
1818 1818
so sánh hai số hữu tỉ bằng cách viết chúng
dưới dạng phân số rồi so sánh hai phân số 3131 3131
18 1818
đĩ. Nên
- Yêu cầu học sinh : 31 3131
1
So sánh hai số hữu tỉ -0,6 và *Nhận xét.
2
Với hai số hữu tỉ x và y ta luơn cĩ :
*HS : Thực hiện.
hoặc x = y hoặc x y. Ta cĩ
*GV : Nhận xét và khẳng định :
thể so sánh hai số hữu tỉ bằng cách viết
6 1 5
Ta cĩ 0,6 ; chúng dưới dạng phân số rồi so sánh hai
10 2 10 phân số đĩ.
Vì -6 0
6 5 1
nên hay - 0,6 Ví dụ:
10 10 - 2 1
So sánh hai số hữu tỉ -0,6 và
*HS : Chú ý nghe giảng và ghi bài. 2
*GV : Yêu cầu học sinh : Ta cĩ:
1 6 1 5
So sánh hai số hữu tỉ 3 và 0 0,6 ;
2 10 2 10
*HS : Thực hiện. Vì -6 0
*GV : Nhận xét. 6 5 1
- Nếu x < y thì trên trục số điểm x cĩ vị nên hay - 0,6
10 10 - 2
trí như thế nào so với điểm y ?.
- Số hữu tỉ lớn 0 thì nĩ ở vị trí như thế
nào so với điểm 0 ?.
- Số hữu tỉ mà nhỏ hơn 0 thì nĩ cĩ vị
trí như thế nào so với điểm 0 ?.
Kết luận:
*HS : Trả lời.
*GV : Nhận xét và khẳng định :
- Nếu x < y thì trên trục số điểm x ở
- Nếu x < y thì trên trục số điểm x ở
bên trái so với điểm y.
bên trái so với điểm y.
- Số hữu tỉ lớn 0 gọi là số hữu tỉ Giáo án toán 7 Giáo viên: Huỳnh Thanh Lâm
- Số hữu tỉ lớn 0 gọi là số hữu tỉ dương. dương.
- Số hữu tỉ mà nhỏ hơn 0 gọi là số hữu - Số hữu tỉ mà nhỏ hơn 0 gọi là số
tỉ dương. hữu tỉ dương.
- Số 0 khơng là số hữu tỉ dương cũng - Số 0 khơng là số hữu tỉ dương cũng
khơng là số hữu tỉ dương. khơng là số hữu tỉ dương.
*HS : Chú ý nghe giảng và ghi bài.
*GV : Yêu cầu học sinh làm ?5.
Trong các số hữu tỉ sau, số nào là số hữu tỉ
dương, số nào là số hữu tỉ âm, số nào khơng
là số hữu tỉ dương cũng khơng phải là số
hữu tỉ âm ?.
3 2 1 0 3
; ; ; 4; ; .
7 3 5 2 5
*HS : Hoạt động theo nhĩm lớn.
*GV : -Yêu cầu các nhĩm nhận xét chéo và
tự đánh giá.
- Nhận xét. ?5.
2 3
- Số hữu tỉ dương : ;
3 5
3 1
- Số hữu tỉ âm : ; ; 4
7 5
- Số khơng là số hữu tỉ dương cũng
0
khơng phải là số hữu tỉ âm:
2
* Phần nâng cao
Bài tập 1/SGK trang 7
GV: Yêu cầu HS làm nhanh và dọc kêt quả
-3 N ; -3 Z ; 3 Q
HS: Học sinh trả lời
GV: Ta thấy mọi phần tử của Tập hợp N Z ; Q; N Z Q
đều thuộc tập hợp Z và mọi phần tử của tập
hợp Z đều thuộc tập hợp Q nên N Z Q
Ta cĩ sơ đồ
Z Q
N
HS: quan sát và ghi chép
4. Củng cố: Giáo án toán 7 Giáo viên: Huỳnh Thanh Lâm
- Gọi HS làm miệng bài 1.
- Cả lớp làm bài 4/SGK, bài 2/SBT.
5. Hướng dẫn dặn dị về nhà :
- Học bài.
- Làm bài 5/SGK, 8,9/SBT.
IV. RÚT KINH NGHIỆM
Giáo án toán 7 Giáo viên: Huỳnh Thanh Lâm
Ngày soạn: 10/08/2018 Ngày dạy:
Tiết: 2 Tuần: 1
§2 CỘNG, TRỪ SỐ HỮU TỈ
I. MỤC TIÊU
1. Kiến thức:
- Học sinh biết cách cộng, trừ hai số hữu tỉ .
- Học sinh hiểu quy tắc chuyển vế.
2. Kĩ năng:
- Vận dụng các tính chất và quy tắc chuyển vế để cộng trừ hai số hữu tỉ.
3. Thái độ:
- Chú ý nghe giảng và làm theo các yêu cầu của giáo viên.
- Tích cực trong học tập, cĩ ý thức trong nhĩm.
II. CHUẨN BỊ
* GV: Giáo án, SGK, Bảng phụ
* HS: Chuẩn bị bài ở nhà, SGK, BT ở nhà
III. TIẾN TRÌNH LÊN LỚP
1. Ổn định và tổ chức:
2. Kiểm tra bài cũ:
Câu 1: Thế nào là số hữu tỉ ? Tập hợp các số hữu tỉ kí hiệu như thế nào ? Cho 3 ví dụ ?
(Dành cho học sinh TB)
Câu 2: So sánh các số hữu tỷ sau bằng cách nhanh nhất: (Dành cho HS khá giỏi)
1 18 999
a) 5 và b) và
63 17 1000
3. Bài mới:
* Đặt vấn đề: Cộng, trừ hai số nguyên phải chăng là cộng, trừ hai số hữu tỉ?
HOẠT ĐỘNG CỦA GV VÀ HS NỘI DUNG
Hoạt động 1: Cộng, trừ hai số hữu tỉ . 1.Cộng, trừ hai số hữu tỉ
*GV: Ví dụ: Tính:
- Nhắc lại quy tắc cộng, trừ hai phân số? 7 4 49 12 37
a,
- Phép cộng phân số cĩ những tính chất nào? 3 7 21 21 21
Từ đĩ áp dụng: Tính:
3 12 3 9
7 4 3 b, ( 3)
a, ? b,( 3) ? 4 4 4 4
3 7 4 Kết luận:
*HS : Thực hiện. Nếu x, y là hai số hữu tỉ
*GV : Nhận xét và khẳng định : a b
Ta đã biết mọi số hữu tỉ đều viết được dưới ( x = ; y với m 0)
m m
a
dạng phân số với a, b Z;b 0 . Khi đĩ:
b a b a b
x y (m 0)
Do vậy ta cĩ thể cộng , trừ hai số hữu tỉ ta áp m m m
dụng quy tắc cộng trừ phân số. Giáo án toán 7 Giáo viên: Huỳnh Thanh Lâm
a b a b a b
- Nếu x, y là hai số hữu tỉ ( x = ; y ) x y (m 0)
m m m m m
thì : x + y = ?; x – y = ?. Chú ý:
*HS : Trả lời. Phép cộng phân số hữu tỉ cĩ các tính chất
*GV : Nhận xét và khẳng định: của phéo cộng phân số: Giao hốn, kết
a b a b hợp, cộng với dố 0. Mỗi số hữu tỉ đều cĩ
x y (m 0)
m m m một số đối.
a b a b ?1
x y (m 0) 2 6 2
m m m a , 0, 6
Chú ý: SGK 3 1 0 3
18 20 2 1
*HS : Chú ý nghe giảng và ghi bài. ;
*GV : Yêu cầu học sinh làm ?1. 30 30 30 15
1 1 4 10 12 32 16
2 1 b, ( 0,4)
Tính : a, 0,6 ; b, ( 0,4). 3 3 10 30 30 30 15
3 3 2. Quy tắc “ chuyển vế ”.
*HS : Thực hiện. Khi chuyển một hạng tử từ vế này sang
Hoạt động 2: Quy tắc “ chuyển vế ”. vế kia của một đẳng thức, ta phải đổi
*GV : Nhắc lại quy tắc chuyển vế trong tập số dấu số hạng đĩ.
nguyên Z ?. Với mọi số x, y, z Q :
*HS : Trả lời. x + y = z x = z - y
*GV : Nhận xét và khẳng định. Ví dụ 1 :
Tương tự như Z, trong Q ta cũng cĩ quy tắc 3 1
“ chuyển vế ”. Tìm x, biết x .
*HS : Chú ý nghe giảng và ghi bài. 7 3
1 3 7 9 16
*GV :Yêu cầu học sinh làm ví dụ 1 : Ta cĩ: x .
3 1 3 7 21 21 21
Tìm x, biết x . 16
7 3 Vậy x =
Hướng dẫn: 21
Để tìm x, ta chuyển tất cả các số khơng chứa ?2. Tìm x, biết:
1 2 2 3
biến sang một vế, số chứa biến sang vế cịn lại. a, x ; b, x .
*HS : Thực hiện 2 3 7 4
*GV : - Nhận xét. Giải:
- Yêu cầu học sinh làm ?2. 1 2 1 2 3 2 1
a, x x
Tìm x, biết: 2 3 2 3 6 6
1 2 2 3 2 3 2 3 8 21 29
a, x ; b, x . b, x x x .
2 3 7 4 7 4 7 4 28 28
*HS : Hoạt động theo nhĩm. *Chú ý: (SGK)
*GV :- Yêu cầu các nhĩm nhận xét chéo.
- Nhận xét và đưa ra chú ý SGK.
4. Củng cố:
- Gọi 5 HS phát biểu quy tắc cộng, trừ hai số hữu tỉ và quy tắc chuyển vế (Dành cho học
sinh TB) Giáo án toán 7 Giáo viên: Huỳnh Thanh Lâm
- Hoạt động nhĩm bài 8, bài 9a, bài 10 SGK.
5. Hướng dẫn về nhà
- Học kĩ các quy tắc SGK.
- Làm bài 6 SGK, Bài 2.4, 2.5 SBT Tốn 7, bài 2.6 (Dành cho HS khá giỏi)
IV. RÚT KINH NGHIỆM
......./08/2018
TỔ TRƯỞNG
Trần Thị Anh ĐàoTài liệu đính kèm: