A. Mục tiêu:
- Nắm vững nội dung hai định lý, vận dụng được chúng trong những tình huống cần thiết, hiểu được phép chứng minh của định lí 1.
- Biết vẽ hình đúng yêu cầu và dự đoán nhận xét các tính chất qua hình vẽ.
- Biết diễn đạt một định lí thành một bài toán với hình vẽ, giả thiết và kết luận.
B. Chuẩn bị: Bảng phụ ghi đề bài.
C. Bài tập
Chủ đề 2: Quan hệ giữa các yếu tố của tam giác. Các đường đồng quy trong tam giác Tiết 21 - 24: Quan hệ góc và cạnh đối diện trong một tam giác. A. Mục tiêu: - Nắm vững nội dung hai định lý, vận dụng được chúng trong những tình huống cần thiết, hiểu được phép chứng minh của định lí 1. - Biết vẽ hình đúng yêu cầu và dự đoán nhận xét các tính chất qua hình vẽ. - Biết diễn đạt một định lí thành một bài toán với hình vẽ, giả thiết và kết luận. B. Chuẩn bị: Bảng phụ ghi đề bài. C. Bài tập Bài 1: a. So sánh các góc của tam giác PQR biết rằng PQ = 7cm; QR = 7cm; PR = 5cm b. So sánh các cạnh của tam giác HIK biết rằng H = 750; K = 350 Giải: a. Từ hình vẽ bên ta có: PQ = RP P cân tại Q R = P QR > PR P > Q 7 5 (quan hệ giữa cạnh và góc đối diện) vậy R = P > Q Q R b. I = 1800 - (750 + 350) = 1800 - 1100 = 700 H > I > K IK > HK > HI (quan hệ giữa cạnh và góc đối diện) Tiết 21: Bài 2: Cho tam giác ABC. Chứng minh rằng AB + AC > BC Giải: Trên tia đới của tia AB lấy điểm D D sao cho AD = AC Ta có: AD = AC cân đỉnh D ADC = ACD (1) A Tia CA nằm giữa hai tia CB và CD Do đó: BCD > ACD (2) Từ (1) và (2) ta có: BCD > ADC B C Xét tam giác DBC có BCD > BDC suy ra DB > BC (quan hệ giữa góc và cạnh đối diện trong tam giác) (3) mà DB = AB + AD = AB + AC (4) Từ (3) và (4) ta có: AB + AC > BC Bài 3: Cho tam giác ABC, A = 900. Trên tia đối của tia AC lấy D sao cho AD BD B Giải: Trên tia AC lấy điểm E sao cho AE = AD Ta có: AE < AC (Vì AD < AC) Nên E nằm giữa A và C Mà BA DE và DA = AE D A E C cân đỉnh B BDE = BEA Ta có: BEA > BCE (BEA là góc ngoài của tam giác BEC) Do đó: BDC > BCD Xét tam giác BDC có: BDC > BCD Suy ra: BC > BD (quan hệ giữa góc và cạnh đối diện trong một tam giác) Bài 4: Cho tam giác ABC có AB < AC, M là trung điểm của cạnh BC. So sánh BAM và MAC A Giải: Vẽ tia đối của tia MA và trên đó lấy điểm D sao cho MD = MA Xét tam giác MAB và tam giác MDC có: B M C MA = MD; AMB = DMC (đối đỉnh) MB = MC (M là TĐ của cạnh BC) Do đó: (c.g.c) D Suy ra: AB = CD; BAM = MDC Ta có: AB = CD; AB < AC CD < CA Xét tam giác ADC có: CD < AC MAC < MDC (quan hệ giữa góc và cạnh đối diện trong tam giác) Mà MAC < MDC và BAM = MDC Suy ra: MAC < BAM Tiết 22: Bài 5: Cho tam giác ABC vuông ở A, tia phân giác của góc B cắt AC ở D. So sánh các độ dài AD, DC. B Giải: Kẻ DH BC H (cạnh huyền - góc nhọn) A D C AD = DH vuông tại H DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) suy ra: AD < DC Bài 6: Chứng minh rằng nếu một tam giác vuông có một góc nhọn bằng 300 thì cạnh góc vuông đối diện với nó bằng nửa cạnh huyền. Giải: Xét tam giác ABC có A = 900; B = 300 Cần chứng minh: AC = BC B Trên BC lấy điểm D sao cho CD = CA Tam giác ACD còn có: C = 600, AD = AC = CD D Tam giác ABD có B = 300; A2 = 300 nên là tam giác đều suy ra AD = BE. Do đó: AC = BC A C Bài 7: Cho tam giác ABC có A = 850, B = 400 a. So sánh các cạnh của tam giác ABC A. AB < BC < AC C. AB < AC < BC B. BC < AC < AB D. AC < AB < BC b. Trên tia đối của yia AB lấy điểm D sao cho AD = AC. Trên tia đối của tia BA lấy điểm E sao cho BE = BC. So sánh độ dài các đoạn CD; CB; CE A. CE < CB < CD C. CD < CE < CB B. CB < CE < CD D. CD < CB < CE Giải: a. Chọn D Vì C = 1800 - (A + B) = 1800 - (85 + 40) = 55 Khi đó nhận thấy rằng B < C < A Ac < AB < BC b. Chọn D Bài 8: Cho tam giác ABC tia phân giác của góc D cắt AC tại D. So sánh độ dài của AB và BC, biết BDC tù. Giải: Để so sánh độ dài của AB và BC ta cần đi so sánh hai góc C và A. Theo giả thiết ta có: BDC tù D1 > 900 2D1 > 1800 Trong tam giác ABD ta có: D1 = A + B2 (1) B Trong tam giác BCD ta có: D1 + B1 + C1 = 1800 (2) Công theo vế (1) và (2) ta được: 2D1 + B1 + C = A + B2 + 1800 A - C = 2D1 - 1800 > 0 A > C BC > AB A D C Tiết 23: Bài 9: Cho góc xOy = 600, điểm A nằm trong góc xOy. Vẽ điểm D sao cho Ox là đường trung trực của AB. Vẽ điểm C sao cho Oy là đường trùng trực của AC. a. Khẳng định OB = OC là đúng hay sai? A. Đúng B. Sai b. Tính số đo góc BOC A. 600; B. 900; C. 1200; D. 1500 Giải: a. Chọn A Vì OA = OB (vì Ox là đường trung trực của AB) OA = OC (vì Oy là đường trung trực của AC) Do đó: OB = OC b. Chọn C vì tam giác OAB cân ở O nên O1 = O2 Tam giác OAC cân ở O nên O3 = O4 Khi đó: BOC = O1 + O2 + O3 + O4 = 2O2 + 2O3 = 2(O2 + O3) = 2(xOy) = 2. 600 = 1200 Vậy ta có: BOC = 1200 Bài 10: a. Cho tam giác ABC và tam giác A1B1C1 có AB = A1B1. AC = A1C1 và BC > B1C1. So sánh số đo của hai góc A và A1 Giải: Theo giả thiết ta có: AB = A1B1; AC = A1C1 và BC > B1C1 Thì A > A1 (quan hệ giữa các cạnh đối diện trong tam giác) b. Cho hai tam giác ABC và A1B1C1 có AB = A1B1. AC = A1C1 và A > A1. Chứng minh rằng BC > B1C1 Giải: Xét tam giác ABC và tam giác A1B1C1 Có AB = A1B1; AC = A1C1 và A > A1 (gt) Suy ra: BC > B1C1 (quan hệ giữa cạnh và góc đối diện trong 1 tam giác) Bài 11: Cho tam giác ABC trung tuyến AM. Lấy điểm M bất kì trên tia đối của tia MA. So sánh độ dài CD và BD. A Giải: Ta lần lượt nhận thấy Với hai tam giác ABM và ACM có: MB = MC (vì M là trung điểm BC) M AM chung; AB < AC B C Do đó: M1 < M2 M3 < M4 Với hai tam giác BDM và CDM có MB = MC (M là trung điểm của BC) D DM chung; M3 < M4 Do đó: CD < BD Bài 12: Cho tam giác ABC với BC > AB. Tia phân giác của góc ABC cắt cạnh AC tại D. Chứng minh CD > DA Giải: Lấy K trên cạnh BC sao cho BK = BA. Có và B Cạnh DB chung; B1 = B2 (Vì BD là tia phân giác ABC) BK = BA (theo cách lấy điểm K) K Vậy = (c.g.c) Suy ra: D1 = D2; DK = DA Mặt khác: CKD là góc ngoài tam A D C giác KDB nên CKD > D1 (1) D2 là góc ngoài tam giác DBC nên D2 > BCD (2) Vì D1 = D2 ; từ (1) và (2) suy ra CKD > BCD Trong tam giác KCD vì K > C nên CD > DK hay CD > DA
Tài liệu đính kèm: