A. Mục tiêu:
KT- Hiểu khái niệm nghiệm của đa thức
KN- Biết cách kiểm tra xem số a có phải là nghiệm của đa thức hay không, bằng cách kiểm tra xem P(a) có bằng không hay không
TĐ: Chỳ ý, cần cự
B. Chuẩn bị: Bảng phụ ghi đề bài
C. Bài tập
1.Ổn định lớp:
2.Bài dạy:
TUẦN 33 Ngày soạn:18/4/2013 Ngày dạy:./4/2013 Tiết 63: CÁC BÀI TOÁN VỀ ĐA THỨC MỘT BIẾN: Nghiệm của đa thức: A. Mục tiêu: KT- Hiểu khái niệm nghiệm của đa thức KN- Biết cách kiểm tra xem số a có phải là nghiệm của đa thức hay không, bằng cách kiểm tra xem P(a) có bằng không hay không TĐ: Chỳ ý, cần cự B. Chuẩn bị: Bảng phụ ghi đề bài C. Bài tập 1.Ổn định lớp: 2.Bài dạy: HĐ của GV HĐ của HS GHI BẢNG Gọi lần lượt HS trả lời Gọi HS khỏc nhận xột Gọi lần lượt HS trả lời Gọi HS khỏc nhận xột Gọi lần lượt HS thực hiện Gọi HS khỏc nhận xột Gọi lần lượt HS thực hiện Gọi HS khỏc nhận xột Từng HS trả lời HS khỏc nhận xột Từng HS trả lời HS khỏc nhận xột Từng HS thực hiện HS khỏc nhận xột Từng HS thực hiện HS khỏc nhận xột Bài 1: Tìm nghiệm của đa thức: (x2 + 2) (x2 - 3) A. x = 1; B, x = ; C. x = ; D. x = 2 Giải: Chọn C Nghiệm của đa thức: (x2 + 2) (x2 - 3) thoả mãn (x2+2)(x2-3)=0 Bài 2: Tìm nghiệm của đa thức x2 - 4x + 5 A. x = 0; B. x = 1; C. x = 2; D. vô nghiệm b. Tìm nghiệm của đa thức x2 + 1 A. x = - 1; B. x = 0; C. x = 1; D. vô nghiệm c. Tìm nghiệm của đa thức x2 + x + 1 A. x = - 3; B. x = - 1; C. x = 1; D. vô nghiệm Giải: a. Chọn D Vì x2 - 4x + 5 = (x - 2)2 + 1 0 + 1 > 1 Do đó đa thức x2 - 4x + 4 không có nghiệm b. Chọn D vì x2 + 1 0 + 1 > 1 Do đó đa thức x2 + 1 không có nghiệm c. Chọn D vì x2 + x + 1 = Do đó đ thức x2 + x + 1 không có nghiệm Bài 3: a. Trong một hợp số số nào là nghiệm của đa thức, số nào không là nghiệm của đa thức P(x) = x4 + 2x3 - 2x2 - 6x + 5 b. Trong tập hợp số số nào là nghiệm của đa thức, số nào không là nghiệm của đa thức. Giải: a. Ta có: P(1) = 1 + 2 - 2 - 6 + 5 = 0 P(-1) = 1 - 2 - 2 + 6 + 5 = 8 0 P(5) = 625 + 250 - 50 - 30 + 5 = 800 0 P(- 5) = 625 - 250 - 50 + 30 + 5 = 360 0 Vậy x = 1 là nghiệm của đa thức P(x), còn các số 5; - 5; - 1 không là nghiệm của đa thức. b. Làm tương tự câu a Ta có: - 3; là nghiệm của đa thức Q(x) Bài 4: Tìm nghiệm của đa thức sau: f(x) = x3 - 1; g(x) = 1 + x3 f(x) = x3 + 3x2 + 3x + 1 Giải: Ta có: f(1) = 13 - 1 = 1 - 1 = 0, vậy x = 1 là nghiệm của đa thức f(x) g(- 1) = 1 + (- 1)3 = 1 - 1, vậy x = - 1 là nghiệm của đa thức g(x) g(- 1) = (- 1)3 + 3.(- 1)2 + 3. (- 1) + 1 = - 1 + 3 - 3 + 1 = 0 Vậy x = 1 là nghiệm của đa thức f(x) Củng cố: Nhắc lại cỏc kiến thức vừa ụn tập HD: Xem lại cỏc bài tập vừa sửa RÚT KINH NGHIỆM: Ngày soạn:18/4/2013 Ngày dạy:./4/2013 Tiết 64: CÁC BÀI TOÁN VỀ ĐA THỨC MỘT BIẾN: A. Mục tiêu: KT- Hiểu khái niệm nghiệm của đa thức,biết cộng trừ hai đa thức một biến KN- Biết cách kiểm tra xem số a có phải là nghiệm của đa thức hay không, bằng cách kiểm tra xem P(a) có bằng không hay không,biết cộng trừ hai đa thức một biến TĐ: Chỳ ý, cần cự B. Chuẩn bị: Bảng phụ ghi đề bài C. Bài tập 1.Ổn định lớp: 2.Bài dạy: HĐ của GV HĐ của HS GHI BẢNG Gọi lần lượt HS thực hiện Gọi HS khỏc nhận xột Gọi lần lượt HS thực hiện Gọi HS khỏc nhận xột Gọi lần lượt HS thực hiện Gọi HS khỏc nhận xột Từng HS thực hiện HS khỏc nhận xột Từng HS trả lời HS khỏc nhận xột Từng HS thực hiện HS khỏc nhận xột Từng HS thực hiện HS khỏc nhận xột Từng HS thực hiện HS khỏc nhận xột Bài 5: a. Chứng tỏ rằng đa thức f(x) = x4 + 3x2 + 1 không có nghiệm b. Chứng minh rằng đa thức P(x) = - x8 + x5 - x2 + x + 1 không có nghiệm Giải: a. Đa thức f(x) không có nghiệm vì tại x = a bất kì f(a) = a4 + 3a2 + 1 luôn dương b. Ta có: P(x) = x5(1 - x3) + x(1 - x) Nếu x 1 thì 1 - x3 0; 1 - x 0 nên P(x) < 0 Nếu 0 x 1 thì P(x) = - x8 + x2 (x3 - 1) + (x - 1) < 0 Nếu x < 0 thì P(x) < 0 Vậy P(x) không có nghiệm. Bài 6: Cho các đa thức f(x) = 3 + 3x - 1 + 3x4; g(x) = - x3 + x2 - x + 2 - x4 Tính f(x) + g(x); f(x) - g(x) Giải: f(x) + g(x) = 3 + 3x - 1 + 3x4 + (- x3 + x2 - x + 2 - x4) = 2x4 + x2 + 2x - 1 Tương tự: f(x) - g(x) = 4x4 + 2x3 - x2 + 4x - 3 Bài 7: tính tổng f(x) + g(x) và hiệu f(x) - g(x) với a. f(x) = 10x5 - 8x4 + 6x3 - 4x2 + 2x + 1 + 3x6 g(x) = - 5x5 + 2x4 - 4x3 + 6x2 - 8x + 10 + 2x6 b. f(x) = 15x3 + 7x2 + 3x - + 3x4 g(x) = - 15x3 - 7x2 - 3x + + 2x4 Giải: a. Ta có f(x) + g(x) = 6x6 + 5x5 - 6x4 + 2x3 + 2x2 - 6x + 11 f(x) - g(x) = x6 + 15x5 - 10x4 + 10x3 - 10x2 + 10x - 9 b. f(x) + g(x) = 5x4 f(x) - g(x) = x4 + 30x3 + 14x2 + 6x - 1 Bài 8: Cho các đa thức f(x) = 2x4 - x3 + x - 3 + 5x5 g(x) = - x3 + 5x2 + 4x + 2 + 3x5 h(x) = x2 + x + 1 + x3 + 3x4 Hãy tính: f(x) + g(x) + h(x); f(x) - g(x) - h(x) Giải: f(x) + g(x) + h(x) = 8x5 + 5x4 + 6x2 + 6x f(x) - g(x) - h(x) = 2x5 - x4 - 2x3 - 6x2 - 4x - 6 Bài 9: Đơn giản biểu thức: a. (0,5a - 0,6b + 5,5) - (- 0,5a + 0,4b) + (1,3b - 4,5) b. (1 - x + 4x2 - 8x3) + (2x3 + x2 - 6x - 3) - (5x3 + 8x2) Giải: 0,5a - 0,6b + 5,5 + 0,5a - 0,4b + 1,3b - 4,5 = a + 0,3b + 1 1 - x + 4x2 - 8x3 + 2x3 + x2 - 6x - 3 - 5x3 - 8x2 = - 11x3 - 3x2 - x - 2 Bài 10: Chứng minh rằng: A + B - C = C - B - A Nếu A = 2x - 1; B = 3x + 1 và C = 5x Giải: A + B - C = 2x - 1 + 3x + 1 - 5x = 5x - 5 - 1 + 1 = 0 C - B - A = 5x - 3x + 1 - 2x - 1 = 5x - 3x - 2x + 1 - 1 = 0 Vậy A + B - C = C - B - A Củng cố: Nhắc lại cỏc kiến thức vừa ụn tập HD: Xem lại cỏc bài tập vừa sửa RÚT KINH NGHIỆM: Duyệt ngày 19/4/2013 TT Vũ Thị Thắm
Tài liệu đính kèm: