Bài 4: (3 điểm) Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây
Bài 5: (4 điểm) Cho tam giác ABC cân tại A có , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh:
a) Tia AD là phân giác của góc BAC
b) AM = BC
§Ò 1 Bµi 1. (4 ®iÓm) Chøng minh r»ng 76 + 75 – 74 chia hÕt cho 55 TÝnh A = 1 + 5 + 52 + 53 + . . . + 549 + 55 0 Bµi 2. (4 ®iÓm) T×m c¸c sè a, b, c biÕt r»ng : vµ a + 2b – 3c = -20 Cã 16 tê giÊy b¹c lo¹i 20 000®, 50 000®, 100 000®. TrÞ gi¸ mçi lo¹i tiÒn trªn ®Òu b»ng nhau. Hái mçi lo¹i cã mÊy tê? Bµi 3. (4 ®iÓm) Cho hai ®a thøc f(x) = x5 – 3x2 + 7x4 – 9x3 + x2 - x g(x) = 5x4 – x5 + x2 – 2x3 + 3x2 - TÝnh f(x) + g(x) vµ f(x) – g(x). TÝnh gi¸ trÞ cña ®a thøc sau: A = x2 + x4 + x6 + x8 + + x100 t¹i x = -1. Bµi 4. (4 ®iÓm) Cho tam gi¸c ABC cã gãc A b»ng 900, trªn c¹nh BC lÊy ®iÓm E sao cho BE = BA. Tia ph©n gi¸c cña gãc B c¾t AC ë D. So s¸nh c¸c ®é dµi DA vµ DE. TÝnh sè ®o gãc BED. Bµi 5. (4 ®iÓm) Cho tam gi¸c ABC, ®êng trung tuyÕn AD. KÎ ®êng trung tuyÕn BE c¾t AD ë G. Gäi I, K theo thø tù lµ trung ®iÓm cña GA, GB. Chøng minh r»ng: IK// DE, IK = DE. AG = AD. §Ò 2: Môn: Toán 7 Bài 1: (3 điểm): Tính Bài 2: (4 điểm): Cho chứng minh rằng: a) b) Bài 3:(4 điểm) Tìm biết: a) b) Bài 4: (3 điểm) Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây Bài 5: (4 điểm) Cho tam giác ABC cân tại A có , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: Tia AD là phân giác của góc BAC AM = BC Bài 6: (2 điểm): Tìm biết: §Ò 3 Bài 1:(4 điểm) a) Thực hiện phép tính: b) Chứng minh rằng : Với mọi số nguyên dương n thì : chia hết cho 10 Bài 2:(4 điểm) Tìm x biết: a. b. Bài 3: (4 điểm) Số A được chia thành 3 số tỉ lệ theo . Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. Cho . Chứng minh rằng: Bài 4: (4 điểm) Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng c) Từ E kẻ . Biết = 50o ; =25o . Tính và Bài 5: (4 điểm) Cho tam giác ABC cân tại A có , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: Tia AD là phân giác của góc BAC AM = BC §Ò 4 Bµi 1: (2 ®iÓm) Cho A = 2-5+8-11+14-17++98-101 a, ViÕt d¹ng tæng qu¸t d¹ng thø n cña A b, TÝnh A Bµi 2: ( 3 ®iÓm) T×m x,y,z trong c¸c trêng hîp sau: a, 2x = 3y =5z vµ =5 b, 5x = 2y, 2x = 3z vµ xy = 90. c, Bµi 3: ( 1 ®iÓm) Cho vµ (a1+a2++a9 ≠0) Chøng minh: a1 = a2 = a3== a9 2. Cho tØ lÖ thøc: vµ b ≠ 0 Chøng minh c = 0 Bµi 4: ( 2 ®iÓm) Cho 5 sè nguyªn a1, a2, a3, a4, a5. Gäi b1, b2, b3, b4, b5 lµ ho¸n vÞ cña 5 sè ®· cho. Chøng minh r»ng tÝch (a1-b1).(a2-b2).(a3-b3).(a4-b4).(a5-b5) 2 Bµi 5: ( 2 ®iÓm) Cho ®o¹n th¼ng AB vµ O lµ trung ®iÓm cña ®o¹n th¼ng ®ã. Trªn hai nöa mÆt ph¼ng ®èi nhau qua AB, kÎ hai tia Ax vµ By song song víi nhau. Trªn tia Ax lÊy hai ®iÓm D vµ F sao cho AC = BD vµ AE = BF. Chøng minh r»ng : ED = CF. === HÕt=== §Ò 5 Bµi 1: (3 ®iÓm) Thùc hiÖn phÐp tÝnh: T×m c¸c gi¸ trÞ cña x vµ y tho¶ m·n: T×m c¸c sè a, b sao cho lµ b×nh ph¬ng cña sè tù nhiªn. Bµi 2: ( 2 ®iÓm) T×m x,y,z biÕt: vµ x-2y+3z = -10 Cho bèn sè a,b,c,d kh¸c 0 vµ tho¶ m·n: b2 = ac; c2 = bd; b3 + c3 + d3 ≠ 0 Chøng minh r»ng: Bµi 3: ( 2 ®iÓm) Chøng minh r»ng: T×m x,y ®Ó C = -18- ®¹t gi¸ trÞ lín nhÊt. Bµi 4: ( 3 ®iÓm) Cho tam gi¸c ABC vu«ng c©n t¹i A cã trung tuyÕn AM. E lµ ®iÓm thuéc c¹nh BC. KÎ BH, CK vu«ng gãc víi AE (H, K thuéc AE). 1, Chøng minh: BH = AK 2, Cho biÕt MHK lµ tam gi¸c g×? T¹i sao? === HÕt=== §Ò sè 6 C©u 1: T×m c¸c sè a,b,c biÕt r»ng: ab =c ;bc= 4a; ac=9b C©u 2: T×m sè nguyªn x tho¶ m·n: a,÷5x-3÷ 4 c, ÷4- x÷ +2x =3 C©u3: T×m gi¸ trÞ nhá nhÊt cña biÓu thøc: A =÷x÷ +÷8 -x÷ C©u 4: BiÕt r»ng :12+22+33+...+102= 385. TÝnh tæng : S= 22+ 42+...+202 C©u 5 : Cho tam gi¸c ABC ,trung tuyÕn AM .Gäi I lµ trung ®iÓm cña ®o¹n th¼ng AM, BI c¾t c¹nh AC t¹i D. a. Chøng minh AC=3 AD b. Chøng minh ID =1/4BD ------------------------------------------------- HÕt ------------------------------------------ §Ò sè 7 Thêi gian lµm bµi: 120 phót C©u 1 . ( 2®) Cho: . Chøng minh: . C©u 2. (1®). T×m A biÕt r»ng: A = . C©u 3. (2®). T×m ®Ó AÎ Z vµ t×m gi¸ trÞ ®ã. a). A = . b). A = . C©u 4. (2®). T×m x, biÕt: a) = 5 . b). ( x+ 2) 2 = 81. c). 5 x + 5 x+ 2 = 650 C©u 5. (3®). Cho r ABC vu«ng c©n t¹i A, trung tuyÕn AM . E Î BC, BH^ AE, CK ^ AE, (H,K Î AE). Chøng minh r MHK vu«ng c©n. -------------------------------- HÕt ------------------------------------ §Ò sè 8 Thêi gian lµm bµi : 120 phót. C©u 1 : ( 3 ®iÓm). 1. Ba ®êng cao cña tam gi¸c ABC cã ®é dµi lµ 4,12 ,a . BiÕt r»ng a lµ mét sè tù nhiªn. T×m a ? 2. Chøng minh r»ng tõ tØ lÖ thøc ( a,b,c ,d¹ 0, a¹b, c¹d) ta suy ra ®îc c¸c tØ lÖ thøc: a) . b) . C©u 2: ( 1 ®iÓm). T×m sè nguyªn x sao cho: ( x2 –1)( x2 –4)( x2 –7)(x2 –10) < 0. C©u 3: (2 ®iÓm). T×m gi¸ trÞ nhá nhÊt cña: A = | x-a| + | x-b| + |x-c| + | x-d| víi a<b<c<d. C©u 4: ( 2 ®iÓm). Cho h×nh vÏ. a, BiÕt Ax // Cy. so s¸nh gãc ABC víi gãc A+ gãc C. b, gãc ABC = gãc A + gãc C. Chøng minh Ax // Cy. x A B y C C©u 5: (2 ®iÓm) Tõ ®iÓm O tïy ý trong tam gi¸c ABC, kÎ OM, ON , OP lÇn lît vu«ng gãc víi c¸c c¹nh BC, CA, Ab. Chøng minh r»ng: AN2 + BP2 + CM2 = AP2 + BM2 + CN2 ---------------------------------------------- HÕt ------------------------------------------ §Ò sè 9 Thêi gian lµm bµi: 120 phót C©u 1(2®): a) TÝnh: A = 1 + b) T×m n Z sao cho : 2n - 3 n + 1 C©u 2 (2®): a) T×m x biÕt: 3x - = 2 b) T×m x, y, z biÕt: 3(x-1) = 2(y-2), 4(y-2) = 3(z-3) vµ 2x+3y-z = 50. C©u 3(2®): Ba ph©n sè cã tæng b»ng , c¸c tö cña chóng tØ lÖ víi 3; 4; 5, c¸c mÉu cña chóng tØ lÖ víi 5; 1; 2. T×m ba ph©n sè ®ã. C©u 4(3®): Cho tam gi¸c ABC c©n ®Ønh A. Trªn c¹nh AB lÊy ®iÓm D, trªn tia ®èi cña tia CA lÊy ®iÓm E sao cho BD = CE. Gäi I lµ trung ®iÓm cña DE. Chøng minh ba ®iÓm B, I, C th¼ng hµng. C©u 5(1®): T×m x, y thuéc Z biÕt: 2x + = ---------------------------------------------------HÕt---------------------------------------------- §Ò sè 10 Thêi gian lµm bµi: 120’. C©u 1: TÝnh : a) A = . b) B = 1+ C©u 2: a) So s¸nh: vµ . b) Chøng minh r»ng: . C©u 3: T×m sè cã 3 ch÷ sè biÕt r»ng sè ®ã lµ béi cña 18 vµ c¸c ch÷ sè cña nã tØ lÖ theo 1:2:3 C©u 4 Cho tam gi¸c ABC cã gãc B vµ gãc C nhá h¬n 900 . VÏ ra phÝa ngoµi tam gi¸c Êy c¸c tam gi¸c vu«ng c©n ABD vµ ACE ( trong ®ã gãc ABD vµ gãc ACE ®Òu b»ng 900 ), vÏ DI vµ EK cïng vu«ng gãc víi ®êng th¼ng BC. Chøng minh r»ng: a. BI=CK; EK = HC; b. BC = DI + EK. C©u 5: T×m gi¸ trÞ nhá nhÊt cña biÓu thøc : A = ------------------------------------------ hÕt --------------------------------------------- §Ò sè 11 Thêi gian lµm bµi: 120 phót C©u 1: (1,5 ®)T×m x biÕt: a, ++++=0 b, C©u2:(3 ®iÓm) a, TÝnh tæng: b, CMR: c, Chøng minh r»ng mäi sè nguyªn d¬ng n th×: 3n+2 – 2n+2 +3n – 2n chia hÕt cho 10 C©u3: (2 ®iÓm) §é dµi ba c¹nh cña mét tam gi¸c tØ lÖ víi 2;3;4. Hái ba chiÒu cao t¬ng øng ba c¹nh ®ã tØ lÖ víi sè nµo? C©u 4: (2,5®iÓm) Cho tam gi¸c ABC cã gãchai ®êng ph©n gi¸c AP vµ CQ cña tam gi¸c c¾t nhau t¹i I. a, TÝnh gãc AIC b, CM : IP = IQ C©u5: (1 ®iÓm) Cho . T×m sè nguyªn n ®Ó B cã gi¸ trÞ lín nhÊt. ------------------------------------------ hÕt ----------------------------------------- §Ò sè 12 Thêi gian : 120’ C©u 1 : (3®) T×m sè h÷u tØ x, biÕt : a) = - 243 . b) c) x - 2 = 0 (x) C©u 2 : (3®) a, T×m sè nguyªn x vµ y biÕt : b, T×m sè nguyªn x ®Ó A cã gi¸ trÞ lµ 1 sè nguyªn biÕt : A = (x) C©u 3 : (1®) T×m x biÕt : 2. - 2x = 14 C©u 4 : (3®) a, Cho ABC cã c¸c gãc A, B , C tØ lÖ víi 7; 5; 3 . C¸c gãc ngoµi t¬ng øng tØ lÖ víi c¸c sè nµo . b, Cho ABC c©n t¹i A vµ ¢ < 900 . KÎ BD vu«ng gãc víi AC . Trªn c¹nh AB lÊy ®iÓm E sao cho : AE = AD . Chøng minh : 1) DE // BC 2) CE vu«ng gãc víi AB . -----------------------------------HÕt-------------------------------- §Ò sè 13 Thêi gian lµm bµi: 120 phót Bµi1( 3 ®iÓm) a, TÝnh: A = b, TÝnh nhanh: (18.123 + 9.436.2 + 3.5310.6) : (1 + 4 +7 ++ 100 – 410) Bµi 2: ( 2®iÓm). T×m 3 sè nguyªn d¬ng sao cho tæng c¸c nghÞch ®¶o cña chóng b»ng 2. Bµi 3: (2 ®iÓm). CÇn bao nhiªu ch÷ sè ®Ó ®¸nh sè trang mét cuèn s¸ch dµy 234 trang. Bµi 4: ( 3 ®iÓm) Cho ABC vu«ng t¹i B, ®êng cao BE T×m sè ®o c¸c gãc nhän cña tam gi¸c , biÕt EC – EA = AB. -------------------------------------------- hÕt ------------------------------------------- §Ò sè 14 Thêi gian lµm bµi 120 phót Bµi 1(2 ®iÓm). Cho a.ViÕt biÓu thøc A díi d¹ng kh«ng cã dÊu gi¸ trÞ tuyÖt ®èi. b.T×m gi¸ trÞ nhá nhÊt cña A. Bµi 2 ( 2 ®iÓm) a.Chøng minh r»ng : . b.T×m sè nguyªn a ®Ó : lµ sè nguyªn. Bµi 3(2,5 ®iÓm). T×m n lµ sè tù nhiªn ®Ó : Bµi 4(2 ®iÓm) Cho gãc xOy cè ®Þnh. Trªn tia Ox lÊy M, Oy lÊy N sao cho OM + ON = m kh«ng ®æi. Chøng minh : §êng trung trùc cña MN ®i qua mét ®iÓm cè ®Þnh. Bµi 5(1,5 ®iÓm). T×m ®a thøc bËc hai sao cho : . ¸p dông tÝnh tæng : S = 1 + 2 + 3 + + n. ------------------------------------ HÕt -------------------------------- §Ò sè 15 Thêi gian lµm bµi: 120 phót C©u 1: (2®) Rót gän A= C©u 2 (2®) Ba líp 7A,7B,7C cã 94 häc sinh tham gia trång c©y. Mçi häc sinh líp 7A trång ®îc 3 c©y, Mçi häc sinh líp 7B trång ®îc 4 c©y, Mçi häc sinh líp 7C trång ®îc 5 c©y,. Hái mçi líp cã bao nhiªu häc sinh. BiÕt r»ng sè c©y mçi líp trång ®îc ®Òu nh nhau. C©u 3: (1,5®) Chøng minh r»ng lµ mét sè tù nhiªn. C©u 4 : (3®) Cho gãc xAy = 600 vÏ tia ph©n gi¸c Az cña gãc ®ã . Tõ mét ®iÓm B trªn Ax vÏ ®êng th¼ng song song víi víi Ay c¾t Az t¹i C. vÏ Bh ^ Ay,CM ^Ay, BK ^ AC. Chøng minh r»ng: a, K lµ trung ®iÓm cña AC. b, BH = c, ®Òu C©u 5 (1,5 ®) Trong mét kú thi häc sinh giái cÊp HuyÖn, bèn b¹n Nam, B¾c, T©y, §«ng ®o¹t 4 gi¶i 1,2,3,4 . BiÕt r»ng mçi c©u trong 3 c©u díi ®©y ®óng mét nöa vµ sai 1 nöa: a, T©y ®¹t gi¶i 1, B¾c ®¹t gi¶i 2. b, T©y ®¹t gi¶i 2, §«ng ®¹t gi¶i 3. c, Nam ®¹t gi¶i 2, §«ng ®¹t gi¶i 4. Em h·y x¸c ®Þnh thø tù ®óng cña gi¶i cho c¸c b¹n. --------------------------------- HÕt -------------------------------------- §Ò sè 16: Thêi gian lµm bµi 120 phót C©u 1: (2®) T×m x, biÕt: a) b) c) d) C©u 2: (2®) a) TÝnh tæng S = 1+52+ 54+...+ 5200 b) So s¸nh 230 + 330 + 430 vµ 3.2410 C©u 3: (2®) Cho tam gi¸c ABC cã gãc B b»ng 600. Hai tia ph©n gi¸c AM vµ CN cña tam gi¸c ABC c¾t nhau t¹i I. a) TÝnh gãc AIC b) Chøng minh IM = IN C©u 4: (3®) ... 2+.0,(32)= 0,12+.0,(01).32 = = C©u IV : Gäi ®a thøc bËc hai lµ : P(x) = ax(x-1)(x-2) + bx(x-1)+c(x-3) + d P(0) = 10 => -3c+d =10 (1) P(1) = 12 => -2c+d =12 =>d =12+2c thay vµo (1) ta cã -3c+12+2c =10 =>c=2 , d =16 P(2)= 4 => 2b -2+16 = 4 > b= -5 P(3) = 1 => 6a-30 +16 =1 => a = VËy ®a thøc cÇn t×m lµ : P(x) = => P(x) = - C©u V: a) DÔ thÊy ADC = ABE ( c-g-c) => DC =BE . V× AE ^ AC; AD ^ AB mÆt kh¸c gãc ADC = gãc ABE => DC ^ Víi BE. b) Ta cã MN // DC vµ MP // BE => MN ^ MP MN = DC =BE =MP; VËy MNP vu«ng c©n t¹i M. --------------------------------------------------------- §¸p ¸n ®Ò 24 Bµi 1: a) A = (0,25®) A = (0,25®) A = + = 0 (0,25®) b) 4B = 22 + 24 + ... + 2102 (0,25®) 3B = 2102 – 1; B = (0,25®) Bµi 2: a) Ta cã 430 = 230.415 (0,25®) 3.2410 = 230.311 (0,25®) mµ 415 > 311 Þ 430 > 311 Þ 230 + 330 + 430 > 3.2410 (0,25®) b) 4 = > > (0,25®) Þ + > + (0,25®) Bµi 3: Gäi x1, x2 x3 lÇn lît lµ sè ngµy lµm viÖc cña 3 m¸y Þ (1) (0,25®) Gäi y1, y2, y3 lÇn lît lµ sè giê lµm viÖc cña c¸c m¸y Þ (2) (0,25®) Gäi z1, z2, z3 lÇn lît lµ c«ng suÊt cña 3 m¸y Þ 5z1 = 4z2 = 3z3 Û (3) (0,25®) Mµ x1y1z1 + x2y2z2 + x3y3z3 = 359 (3) (0,25®) Tõ (1) (2) (3) Þ (0,5®) Þ x1y1z1 = 54; x2y2z2 = 105; x3y3z3 = 200 (0,25®) VËy sè thãc mçi ®éi lÇn lît lµ 54, 105, 200 (0,25®) Bµi 4: a) DEAB =DCAD (c.g.c) (0,5®) Þ (1) (0,25®) Ta cã (gãc ngoµi tam gi¸c) (0,25®) Þ (0,25®) b) Trªn DM lÊy F sao cho MF = MB (0,5®) Þ DFBM ®Òu (0,25®) Þ DDFB = DAMB (c.g.c) (0,25®) Þ (0,5®) Bµi 6: Ta cã (0,25®) (0,25®) Þ (0,5®) ------------------------------------------------------- ®¸p ¸n ®Ò 25 C©u 1 a.NÕu x 0 suy ra x = 1 (tho· m·n) NÕu < 0 suy ra x = -3 (tho· m·n) b. ; hoÆc ;hoÆc hoÆc ;hoÆc ; hoÆc hoÆc ; hoÆc Tõ ®ã ta cã c¸c cÆp sè (x,y) lµ (9,1); (-3, -1) ; (6, 2) ; (0,- 2) ; (5, 3) ; (1, -3) ; (4, 6); (2, -6) c. Tõ 2x = 3y vµ 5x = 7z biÕn ®æi vÒ à x = 42; y = 28; z = 20 C©u 2 A lµ tÝch cña 99 sè ©m do ®ã B = B nguyªn C©u 3 Thêi gian ®i thùc tÕ nhiÒu h¬n thêi gian dù ®Þnh Gäi vËn tèc ®i dù ®Þnh tõ C ®Õn B lµ v1 == 4km/h VËn tèc thùc tÕ ®i tõ C ®Õn B lµ V2 = 3km/h Ta cã: (t1 lµ thêi gian ®i AB víi V1; t2 lµ thêi gian ®i CB víi V2) tõ à t2 = 15 . 4 = 60 phót = 1 giê VËy qu·ng ®êng CB lµ 3km, AB = 15km Ngêi ®ã xuÊt ph¸t tõ 11 giê 45 phót – (15:4) = 8 giê C©u 4 Tam gi¸c AIB = tam gi¸c CID v× cã (IB = ID; gãc I1 = gãc I2; IA = IC) Tam gi¸c AID = tam gi¸c CIB (c.g.c) à gãc B1 = gãc D1 vµ BC = AD hay MB =ND à tam gi¸c BMI = tam gi¸c DNI (c.g.c) à Gãc I3 = gãc I4 à M, I, N th¼ng hµng vµ IM = IN Do vËy: I lµ trung ®iÓm cña MN Tam gi¸c AIB cã gãc BAI > 900 à gãc AIB 900 NÕu AC vu«ng gãc víi DC th× AB vu«ng gãc víi AC do vËy tam gi¸c ABC vu«ng t¹i A C©u 5. P = P lín nhÊt khi lín nhÊt XÐt x > 4 th× < 0 XÐt x 0 à lín nhÊt à 4 – x lµ sè nguyªn d¬ng nhá nhÊt à 4 – x = 1 à x = 3 khi ®ã = 10 à Plín nhÊt = 11. ------------------------------------------------------------- Híng dÉn chÊm ®Ò 26 Bµi 1 : a) T×m x . Ta cã + 5x =9 = 9-5x * 2x –6 ³ 0 x ³ 3 khi ®ã 2x –6 = 9-5x x = kh«ng tho· m·n. (0,5) * 2x – 6 < 0 x< 3 khi ®ã 6 – 2x = 9-5x x= 1 tho· m·n. (0,5) VËy x = 1. b) TÝnh . (1+2+3+...+90).( 12.34 – 6.68) : = 0. (0,5) ( v× 12.34 – 6.68 = 0). c) Ta cã : 2A = 21 + 22 +23 + 24 + 25 +...+ 2101 2A – A = 2101 –1. (0,5) Nh vËy 2101 –1 < 2101 . VËy A<B . (0,5) Bµi 2 : Gäi 3 c¹nh cña tam gi¸c ABC lµ a, b, c vµ 3 ®êng cao t¬ng øng lµ ha, hb, hc . Theo ®Ò bµi ta cã. (ha+ hb): (hb + hc) : (hc + ha ) = 5 :7 :8 hay ha + hb =5k ; hb + hc=7k hc + ha = 8k ; ha + hb +hc =10k . (k lµ hÖ sè tØ lÖ ) . (0,5) Suy ra hc =( ha + hb +hc) – (ha + hb) = 10k –5k =5k. T¬ng tù : ha =3k , hb= 2k . A DiÖn tÝch tam gi¸c : a . ha =b.hb Suy ra T¬ng tù : (0,5) a.ha = b.hb =c.hc B C a:b:c = . Hay a:b:c = 10: 15 :6 . (0,5) Bµi 3 : a) T¹i x = ta cã : A = ; t¹i x = ta cã : A = ; (1) b) Víi x >1 . §Ó A = 5 tøc lµ . (1) Bµi 4 : E thuéc ph©n gi¸c cña ABC nªn EN = EC ( tÝnh chÊt ph©n gi¸c) suy ra : tam gi¸c NEC c©n vµ ENC = ECN (1) . D thuéc ph©n gi¸c cña gãc CAB nªn DC = DM (tÝnh chÊt ph©n gi¸c ) suy ra tam gi¸c MDC c©n . vµ DMC =DCM ,(2) . Ta l¹i cã MDB = DCM +DMC (gãc ngoµi cña DCDM ) = 2DCM. T¬ng tù ta l¹i cã AEN = 2ECN . Mµ AEN = ABC (gãc cã c¹nh t¬ng øng vu«ng gãc cïng nhän). MDB = CAB (gãc cã c¹nh t¬ng øng vu«ng gãc cïng nhän ). Tam gi¸c vu«ng ABC cã ACB = 900 , CAB + CBA = 900 , suy ra CAB = ABC = AEN + MDB = 2 ( ECN + MCD ) suy ra ECN + MCD = 450 . VËy MCN = 900 –450 =450 . (1,5) Bµi 5 : Ta cã P = -x2 –8x + 5 = - x2 –8x –16 +21 = -( x2 +8x + 16) + 21 = -( x+ 4)2 + 21; (0,75) Do –( x+ 4)2 0 víi mäi x nªn –( x +4)2 +21 21 víi mäi x . DÊu (=) x¶y ra khi x = -4 Khi ®ã P cã gi¸ trÞ lín nhÊt lµ 21. ------------------------------------------------------------ híng dÉn ®Ò 27 C©u 1: (3®) b/ 2-1.2n + 4.2n = 9.25 suy ra 2n-1 + 2n+2 = 9.25 0,5® suy ra 2n (1/2 +4) = 9. 25 suy ra 2n-1 .9 =9. 25 suy ra n-1 = 5 suy ra n=6. 0,5® c/ 3n+2-2n+2+3n-2n=3n(32+1)-2n(22+1) = 3n.10-2n.5 0,5® v× 3n.10 10 vµ 2n.5 = 2n-1.10 10 suy ra 3n.10-2n.5 10 0,5® Bµi 2: a/ Gäi x, y, z lÇn lît lµ sè häc sinh cña 7A, 7B, 7C tham gia trång c©y(x, y, z∈z+) ta cã: 2x=3y = 4z vµ x+y+z =130 0,5® hay x/12 = y/8 = z/6 mµ x+y+z =130 0,5® suy ra: x=60; y = 40; z=30 -7(4343-1717) b/ -0,7(4343-1717) = 0,5®10 Ta cã: 4343 = 4340.433= (434)10.433 v× 434 tËn cïng lµ 1 cßn 433 tËn cïng lµ 7 suy ra 4343 tËn cïng bëi 7 1717 = 1716.17 =(174)4.17 v× 174 cã tËn cïng lµ 1 suy ra (174)4 cã tËn cïng lµ 1 suy ra 1717 = 1716.17 tËn cïng bëi 7 0,5® suy ra 4343 vµ 1717 ®Òu cã tËn cïng lµ 7 nªn 4343-1717 cã tËn cïng lµ 0 suy ra 4343-1717 chia hÕt cho 10 0,5® suy ra -0,7(4343-1717) lµ mét sè nguyªn. Bµi 3: 4®( Häc sinh tù vÏ h×nh) a/∆ MDB=∆ NEC suy ra DN=EN 0,5® b/∆ MDI=∆ NEI suy ra IM=IN suy ra BC c¾t MN t¹i ®iÓm I lµ trung ®iÓm cña MN 0,5® c/ Gäi H lµ ch©n ®êng cao vu«ng gãc kÎ tõ A xuèng BC ta cã ∆ AHB=∆ AHC suy ra HAB=HAC 0,5® gäi O lµ giao AH víi ®êng th¼ng vu«ng gãc víi MN kÎ tõ I th× ∆ OAB=∆ OAC (c.g.c) nªn OBA = OCA(1) 0,5® ∆ OIM=∆ OIN suy ra OM=ON 0,5® suy ra ∆ OBN=∆ OCN (c.c.c) OBM=OCM(2) 0,5® Tõ (1) vµ (2) suy ra OCA=OCN=900 suy ra OC ┴ AC 0,5® VËy ®iÓm O cè ®Þnh. ------------------------------------------------------- §¸p ¸n ®Ò 28 C©u 1: (2®). a. ½a½ + a = 2a víi a ³ 0 (0,25®) Víi a < 0 th× ½a½ + a = 0 (0,25®). b. ½a½ - a -Víi a³ 0 th× ½a½ - a = a – a = 0 -Víi a< 0 th× ½a½ - a = - a - a = - 2a c.3(x – 1) - 2½x + 3½ -Víi x + 3 ³ 0 Þ x ³ - 3 Ta cã: 3(x – 1) – 2 ½x + 3½ = 3(x – 1) – 2(x + 3) = 3x – 3 – 2x – 6 = x – 9. (0,5®) -Víi x + 3 < 0 ® x< - 3 Tacã: 3(x – 1) - 2½x + 3½ = 3(x – 1) + 2(x + 3). = 3x – 3 + 2x + 6 = 5x + 3 (0,5®). C©u 2: T×m x (2®). a.T×m x, biÕt: ½5x - 3½ - x = 7 (1) (0,25 ®) §K: x -7 (0,25 ®) . (0,25 ®) VËy cã hai gi¸ trÞ x tháa m·n ®iÒu kiÖn ®Çu bµi. x1 = 5/2 ; x2= - 2/3 (0,25®). b. ½2x + 3½ - 4x < 9 (1,5®) Û½2x + 3½ < 9 + 4x (1) §K: 4x +9 0 x (1) (t/m§K) (0,5®). C©u 3: Gäi ch÷ sè cña sè cÇn t×m lµ a, b, c. V× sè cµn t×m chia hÕt 18 ® sè ®ã ph¶i chia hÕt cho 9. VËy (a + b + c ) chia hÕt cho 9. (1) (0,5®). Tacã: 1 £ a + b + c £ 27 (2) V× 1 £ a £ 9 ; b ³ 0 ; 0 £ c £ 9 Tõ (1) vµ (2) ta cã (a + b + c) nhËn c¸c gi¸ trÞ 9, 18, 27 (3). Suy ra: a = 3 ; b = 6 ; c = 9 (0,5®). V× sè cµn t×m chia hÕt 18 nªn võa chia hÕt cho 9 võa chia hÕt cho 2 ® ch÷ sè hµng ®¬n vÞ ph¶i lµ sè ch½n. VËy ssè cµn t×m lµ: 396 ; 963 (0,5®). -VÏ h×nh ®óng viÕt gi¶ thiÕt, kÕt luËn ®óng (0,5®). -Qua N kÎ NK // AB ta cã. EN // BK Þ NK = EB EB // NK EN = BK L¹i cã: AD = BE (gt) Þ AD = NK (1) -Häc sinh chøng minh D ADM = D NKC (gcg) (1®) Þ DM = KC (1®) ------------------------------------------------------ §¸p ¸n ®Ò 29 Bµi 1: Ta cã: 10A = (1) T¬ng tù: 10B = (2) Tõ (1) vµ (2) ta thÊy : 10A > 10BA > B Bµi 2:(2®iÓm) Thùc hiÖn phÐp tÝnh: A = = (1) Mµ: 2007.2006 - 2 = 2006(2008 - 1) + 2006 - 2008 = 2006(2008 - 1+ 1) - 2008 = 2008(2006 -1) = 2008.2005 (2) Tõ (1) vµ (2) ta cã: A = Bµi 3:(2®iÓm) Tõ: Quy ®ång mÉu vÕ ph¶i ta cã :. Do ®ã : y(x-2) =8. §Ó x, y nguyªn th× y vµ x-2 ph¶i lµ íc cña 8. Ta cã c¸c sè nguyªn t¬ng øng cÇn t×m trong b¶ng sau: Y 1 -1 2 -2 4 -4 8 -8 x-2 8 -8 4 -4 2 -2 1 -1 X 10 -6 6 -2 4 0 3 1 Bµi 4:(2 ®iÓm) Trong tam gi¸c tæng ®é dµi hai c¹nh lín h¬n c¹nh thø 3. VËy cã: b + c > a. Nh©n 2 vÕ víi a >0 ta cã: a.b + a.c > a2. (1) T¬ng tù ta cã : b.c + b.a > b2 (2) a.c + c.b > c2 (3). Céng vÕ víi vÕ cña (1), (2), (3) ta ®îc: 2(ab + bc + ca) > a2 + b2 + c2. C K A I B Bµi 5:(3 ®iÓm) VÏ tia ph©n gi¸c c¾t ®êng th¼ng CK ë I. Ta cã: c©n nªn IB = IC. = (ccc) nªn . Do ®ã: =(gcg) b) Tõ chøng minh trªn ta cã: --------------------------------------------------- §¸p ¸n ®Ò 30 C©u 1: ( 2 ®iÓm ) a. Do víi mäi n nªn . ( 0,2 ®iÓm ) A< C = ( 0,2 ®iÓm ) MÆt kh¸c: C = ( 0,2 ®iÓm) = ( 0,2 ®iÓm) = (0,2 ®iÓm ) VËy A < 1 b. ( 1 ®iÓm ). B = ( 0,25 ®iÓm ) = ( 0,25 ®iÓm ) = ( 0,25 ®iÓm ) Suy ra P < ;Hay P < (0,25 ®iÓm ) C©u 2: ( 2 ®iÓm ) Ta cã víi k = 1,2..n ( 0,25 ®iÓm ) ¸p dông bÊt ®¼ng thøc C« Si cho k +1 sè ta cã: (0,5 ®iÓm ) Suy ra 1 < ( 0,5 ®iÓm ) LÇn lît cho k = 1,2, 3, n råi céng l¹i ta ®îc. n < ( 0,5 ®iÓm) => C©u 3 (2 ®iÓm ) Gäi ha , hb ,hc lÇn lît lµ ®é dµi c¸c ®êng cao cña tam gi¸c. Theo ®Ò bµi ta cã: ( 0,4 ®iÓm ) => => ha : hb : hc = 3 : 2: 5 ( 0,4 ®iÓm ) MÆt kh¸c S = ( 0,4 ®iÓm ) => (0 , 4 ®iÓm ) => a :b : c = (0 ,4 ®iÓm ) VËy a: b: c = 10 : 10 : 6 C©u 4: ( 2 ®iÓm ) Trªn tia Ox lÊy , trªn tia Oy lÊy sao cho O = O = a ( 0,25 ®iÓm ) Ta cã: O + O = OA + OB = 2a => A = B ( 0,25 ®iÓm ) Gäi H vµ K lÇn lît lµ h×nh chiÕu y Cña A vµ B trªn ®êng th¼ng Tam gi¸c HA = tam gi¸c KB ( c¹nh huyÒn, gãc nhän ) ( 0,5 ®iÓm ) => H do ®ã HK = (0,25 ®iÓm) Ta chøng minh ®îc HK (DÊu “ = “ A trïng trïng (0,25 ®iÓm) do ®ã ( 0,2 ®iÓm ) VËy AB nhá nhÊt OA = OB = a (0,25®iÓm ) C©u 5 ( 2 ®iÓm ) Gi¶ sö ( 0,2 ®iÓm ) => => b +b +2 ( 0,2 ®iÓm) => 2 ( 1 ) ( 0,2 ®iÓm) => 4bc = 2 + 4 d2a – 4b ( 0,2 ®iÓm) => 4 d = 2 + 4d 2a – 4 bc ( 0,2 ®iÓm) * NÕu 4 d # 0 th×: lµ sè h÷u tØ (0,2 5®iÓm ) ** NÕu 4 d = 0 th×: d =0 hoÆc d 2+ a-b – c = 0 ( 0,25 ®iÓm ) + d = 0 ta cã : => (0,25 ®iÓm ) + d 2+ a-b – c = 0 th× tõ (1 ) => V× a, b, c, d nªn ( 0,25 ®iÓm ) VËy lµ sè h÷u tØ. Do a,b,c cã vai trß nh nhau nªn lµ c¸c sè h÷u tØ --------------------------------------------------
Tài liệu đính kèm: