Cho đường tròn tâm (O), đường kính AC. Trên đoạn OC lấy điểm B (B≠C) và vẽ đường tròn tâm (O) đường kính BC. Gọi M là trung điểm của đoạn AB. Qua M kẻ một dây cung DE vuông góc với AB. CD cắt đường tròn (O) tại điểm I.
a. Tứ giác ADBE là hình gì? Tại sao?
b. Chứng minh 3 điểm I, B, E thẳng hàng.
c. Chứng minh rằng MI là tiếp tuyến của đường tròn (O) và MI2=MB.MC.
đề thi tuyển sinh vào lớp 10 năm học 1995 – 1996. đề chính thức môn: toán Thời gian làm bài: 150 phút ----------------------------------- câu 1:(3 điểm) Rút gọn các biểu thức sau: câu 2:(2,5 điểm) Cho hàm số a. Vẽ đồ thị của hàm số (P) b. Với giá trị nào của m thì đường thẳng y=2x+m cắt đồ thị (P) tại 2 điểm phân biệt A và B. Khi đó hãy tìm toạ độ hai điểm A và B. câu 3: (3 điểm) Cho đường tròn tâm (O), đường kính AC. Trên đoạn OC lấy điểm B (B≠C) và vẽ đường tròn tâm (O’) đường kính BC. Gọi M là trung điểm của đoạn AB. Qua M kẻ một dây cung DE vuông góc với AB. CD cắt đường tròn (O’) tại điểm I. a. Tứ giác ADBE là hình gì? Tại sao? b. Chứng minh 3 điểm I, B, E thẳng hàng. c. Chứng minh rằng MI là tiếp tuyến của đường tròn (O’) và MI2=MB.MC. câu 4: (1,5điểm) Giả sử x và y là 2 số thoả mãn x>y và xy=1. Tìm giá trị nhỏ nhất của biểu thức . đề thi tuyển sinh vào lớp 10 năm học 1996-1997. đề chính thức: môn toán. Thời gian làm bài: 150 phút. . câu 1:(3 điểm) Cho hàm số . a.Tìm tập xác định của hàm số. b.Tính y biết: a) x=9 ; b) x= c. Các điểm: A(16;4) và B(16;-4) điểm nào thuộc đồ thị của hàm số, điểm nào không thuộc đồ thị của hàm số? Tại sao? Không vẽ đồ thị, hãy tìm hoành độ giao điểm của đồ thị hàm số đã cho và đồ thị hàm số y=x-6. câu 2:(1 điểm) Xét phương trình: x2-12x+m = 0 (x là ẩn). Tìm m để phương trình có 2 nghiệm x1, x2 thoả mãn điều kiện x2 =x12. câu 3:(5 điểm) Cho đường tròn tâm B bán kính R và đường tròn tâm C bán kính R’ cắt nhau tại A và D. Kẻ các đường kính ABE và ACF. a.Tính các góc ADE và ADF. Từ đó chứng minh 3 điểm E, D, F thẳng hàng. b.Gọi M là trung điểm của đoạn thẳng BC và N là giao điểm của các đường thẳng AM và EF. Chứng minh tứ giác ABNC là hình bình hành. c.Trên các nửa đường tròn đường kính ABE và ACF không chứa điểm D ta lần lượt lấy các điểm I và K sao cho góc ABI bằng góc ACK (điểm I không thuộc đường thẳng NB;K không thuộc đường thẳngNC) Chứng minh tam giác BNI bằng tam giác CKN và tam giác NIK là tam giác cân. d.Giả sử rằng R<R’. 1. Chứng minh AI<AK. 2. Chứng minh MI<MK. câu 4:(1 điểm) Cho a, b, c là số đo của các góc nhọn thoả mãn: cos2a+cos2b+cos2c≥2. Chứng minh: (tga. tgb. tgc)2 ≤ 1/8. đề thi tuyển sinh vào lớp 10 năm học 1997- 1998. đề chính thức: môn toán. Thời gian làm bài: 150 phút ... câu 1: (2,5 điểm) Giải các phương trình sau: a. x2-x-12 = 0 b. câu 2: (3,5 điểm) Cho Parabol y=x2 và đường thẳng (d) có phương trình y=2mx-m2+4. a. Tìm hoành độ của các điểm thuộc Parabol biết tung độ của chúng b. Chứng minh rằng Parabol và đường thẳng (d) luôn cắt nhau tại 2 điểm phân biệt. Tìm toạ độ giao điểm của chúng. Với giá trị nào của m thì tổng các tung độ của chúng đạt giá trị nhỏ nhất? câu 3: (4 điểm) Cho ∆ABC có 3 góc nhọn. Các đường cao AA’, BB’, CC’ cắt nhau tại H; M là trung điểm của cạnh BC. 1. Chứng minh tứ giác AB’HC’ nội tiếp được trong đường tròn. 2. P là điểm đối xứng của H qua M. Chứng minh rằng: a. Tứ giác BHCP là hình bình hành. b. P thuộc đường tròn ngoại tiếp ∆ABC. 3. Chứng minh: A’B.A’C = A’A.A’H. 4. Chứng minh: đề thi tuyển sinh vào lớp 10 năm học 1999-2000. đề thi chính thức: môn toán. Thời gian làm bài: 150 phút. . câu 1: (1,5 điểm) Cho biểu thức: 1. Với giá trị nào của x thì biểu thức A có nghĩa? 2. Tính giá trị của biểu thức A khi x=1,999 câu 2: (1,5 điểm) Giải hệ phường trình: câu 3: (2 điểm) Tìm giá trị của a để phương trình: (a2-a-3)x2 +(a+2)x-3a2 = 0 nhận x=2 là nghiệm. Tìm nghiệm còn lại của phương trình? câu 4: (4 điểm) Cho ∆ABC vuông ở đỉnh A. Trên cạnh AB lấy điểm D không trùng với đỉnh A và đỉnh B. Đường tròn đường kính BD cắt cạnh BC tại E. Đường thẳng AE cắt đường tròn đường kính BD tại điểm thứ hai là G. đường thẳng CD cắt đường tròn đường kính BD tại điểm thứ hai là F. Gọi S là giao điểm của các đường thẳng AC và BF. Chứng minh: 1. Đường thẳng AC// FG. 2. SA.SC=SB.SF 3. Tia ES là phân giác của . câu 5: (1 điểm) Giải phương trình: đề thi tuyển sinh lớp 10 năm học 2000-2001. đề chính thức: môn toán. Thời gian làm bài: 150 phút. câu 1: (2 điểm) Cho biểu thức: . 1. Rút gọn biểu thức A. 2. Tìm a ≥0 và a≠1 thoả mãn đẳng thức: A= -a2 câu 2: (2 điểm) Trên hệ trục toạ độ Oxy cho các điểm M(2;1), N(5;-1/2) và đường thẳng (d) có phương trình y=ax+b 1. Tìm a và b để đường thẳng (d) đi qua các điểm M và N? 2. Xác định toạ độ giao điểm của đường thẳng MN với các trục Ox và Oy. câu 3: (2 diểm) Cho số nguyên dương gồm 2 chữ số. Tìm số đó, biết rằng tổng của 2 chữ số bằng 1/8 số đã cho; nếu thêm 13 vào tích của 2 chữ số sẽ được một số viết theo thứ tự ngược lại số đã cho. câu 4: (3 điểm) Cho ∆PBC nhọn. Gọi A là chân đường cao kẻ từ đỉnh P xuống cạnh BC. Đường tròn đường khinh BC cắt cạnh PB và PC lần lượt ở M và N. Nối N với A cắt đường tròn đường kính BC tại điểm thứ 2 là E. 1. Chứng minh 4 điểm A, B, N, P cùng nằm trên một đường tròn. Xác định tâm của đường tròn ấy? 2. Chứng minh EM vuông góc với BC. 3. Gọi F là điểm đối xứng của N qua BC. Chứng minh rằng: AM.AF=AN.AE câu 5: (1 điểm) Giả sử n là số tự nhiên. Chứng minh bất đẳng thức: đề thi tuyển sinh lớp 10 năm học 2001-2002. đề chính thức: môn toán. Thời gian làm bài: 150 phút. câu 1: (1,5 điểm) Rút gọn biểu thức: . câu 2: (1,5 điểm) Tìm 2 số x và y thoả mãn điều kiện: câu 3:(2 điểm) Hai người cùng làm chung một công việc sẽ hoàn thành trong 4h. Nếu mỗi người làm riêng để hoàn thành công việc thì thời gian người thứ nhất làm ít hơn người thứ 2 là 6h. Hỏi nếu làm riêng thì mỗi người phải làm trong bao lâu sẽ hoàn thành công việc? câu 4: (2 điểm) Cho hàm số: y=x2 (P) y=3x=m2 (d) 1. Chứng minh rằng với bất kỳ giá trị nào của m, đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt. 2. Gọi y1 và y2 là tung độ các giao điểm của đường thẳng (d) và (P). Tìm m để có đẳng thức y1+y2 = 11y1y2 câu 5: (3 điểm) Cho ∆ABC vuông ở đỉnh A. Trên cạnh AC lấy điểm M ( khác với các điểm A và C). Vẽ đường tròn (O) đường kính MC. GọiT là giao điểm thứ hai của cạnh BC với đường tròn (O). Nối BM và kéo dài cắt đường tròn (O) tại điểm thứ hai là D. Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là S. Chứng minh: 1. Tứ giác ABTM nội tiếp được trong đường tròn. 2. Khi điểm M di chuyển trên cạnh AC thì góc ADM có số đo không đổi. 3. Đường thẳng AB//ST. đề thi tuyển sinh lớp 10 năm học 2002-2003. đề chính thức: môn toán. Thời gian làm bài: 150 phút. câu 1: (2 điểm) Cho biểu thức: . 1. Rút gọn biểu thức trên. 2. Tìm giá trị của x và y để S=1. câu 2: (2 điểm) Trên parabol lấy hai điểm A và B. Biết hoành độ của điểm A là xA=-2 và tung độ của điểm B là yB=8. Viết phương trình đường thẳng AB. câu 3: (1 điểm) Xác định giá trị của m trong phương trình bậc hai: x2-8x+m = 0 để là nghiệm của phương trình. Với m vừa tìm được, phương trình đã cho còn một nghiệm nữa. Tìm nghiệm còn lại ấy? câu 4: (4 điểm) Cho hình thang cân ABCD (AB//CD và AB>CD) nội tiếp trong đường tròn (O).Tiếp tuyến với đường tròn (O) tại A và tại D cắt nhau tại E. Gọi I là giao điểm của các đường chéo AC và BD. 1. Chứng minh tứ giác AEDI nội tiếp được trong một đường tròn. 2. Chứng minh EI//AB. 3. Đường thẳng EI cắt các cạnh bên AD và BC của hình thang tương ứng ở R và S. Chứng minh rằng: a. I là trung điểm của đoạn RS. b. câu 5: (1 điểm) Tìm tất cả các cặp số (x;y) nghiệm đúng phương trình: (16x4+1).(y4+1) = 16x2y2 đề thi tuyển sinh lớp 10 năm học 2003-2004. đề chính thức: môn toán. Thời gian làm bài: 150 phút. ... câu 1: (2 điểm) Giải hệ phương trình câu 2: (2 điểm) Cho biểu thức . 1. Rút gọn biểu thức A. 2 Tính giá trị của A khi câu 3: (2 điểm) Cho đường thẳng d có phương trình y=ax+b. Biết rằng đường thẳng d cắt trục hoành tại điểm có hoành bằng 1 và song song với đường thẳng y=-2x+2003. 1. Tìm a vầ b. 2. Tìm toạ độ các điểm chung (nếu có) của d và parabol câu 4: (3 điểm) Cho đường tròn (O) có tâm là điểm O và một điểm A cố định nằm ngoài đường tròn. Từ A kẻ các tiếp tuyến AP và AQ với đường tròn (O), P và Q là các tiếp điểm. Đường thẳng đi qua O và vuông góc với OP cắt đường thẳng AQ tại M. 1. Chứng minh rằng MO=MA. 2. Lấy điểm N trên cung lớn PQ của đường tròn (O) sao cho tiếp tuyến tại N của đường tròn (O) cắt các tia AP và AQ tương ứng tại B và C. a. Chứng minh rằng AB+AC-BC không phụ thuộc vị trí điểm N. b.Chứng minh rằng nếu tứ giác BCQP nội tiếp đường tròn thì PQ//BC. câu 5: (1 điểm) Giải phương trình đề thi tuyển sinh lớp 10 năm học 2004-2005. đề chính thức: môn toán. Thời gian làm bài: 150 phút. câu 1: (3 điểm) 1. Đơn giản biểu thức: 2. Cho biểu thức: . a. Chứng minh b. Tìm số nguyên x lớn nhất để Q có giá trị là số nguyên. câu 2: (3 điểm) Cho hệ phương trình: (a là tham số) 1. Giải hệ khi a=1. 2. Chứng minh rằng với mọi giá trị của a, hệ luôn có nghiệm duy nhất (x;y) sao cho x+y≥ 2. câu 3: (3 điểm) Cho đường tròn (O) đường kính AB=2R. Đường thẳng (d) tiếp xúc với đường tròn (O) tại A. M và Q là hai điểm phân biệt, chuyển động trên (d) sao cho M khác A và Q khác A. Các đường thẳng BM và BQ lần lượt cắt đường tròn (O) tại các điểm thứ hai là N và P. Chứng minh: 1. BM.BN không đổi. 2. Tứ giác MNPQ nội tiếp được trong đường tròn. 3. Bất đẳng thức: BN+BP+BM+BQ>8R. câu 4: (1 điểm) Tìm giá trị nhỏ nhất của hàm số: đề thi tuyển sinh lớp 10 năm học 2005-2006. đề chính thức: môn toán. Thời gian làm bài: 150 phút. câu 1: (2 điểm) 1. Tính giá trị của biểu thức . 2. Chứng minh: . câu 2: (3 điểm) Cho parabol (P) và đường thẳng (d) có phương trình: (P): y=x2/2 ; (d): y=mx-m+2 (m là tham số). 1. Tìm m để đường thẳng (d) và (P) cùng đi qua điểm có hoành độ bằng x=4. 2. Chứng minh rằng với mọi giá trị của m, đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt. 3. Giả sử (x1;y1) và (x2;y2) là toạ độ các giao điểm của đường thẳng (d) và (P). Chứng minh rằng . câu 3: (4 điểm) Cho BC là dây cung cố định của đường tròn tâm O, bán kính R(0<BC<2R). A là điểm di động trên cung lớn BC sao cho ∆ABC nhọn. Các đường cao AD, BE, CF của ∆ABC cắt nhau tại H(D thuộc BC, E thuộc CA, F thuộc AB). 1. Chứng minh tứ giác BCEF nội tiếp trong một đường tròn. Từ đó suy ra AE.AC=AF.AB. 2. Gọi A’ là trung điểm của BC. Chứng minh AH=2A’O. 3. Kẻ đường thẳng d tiếp xúc với đường tròn (O) tại A. Đặt S là diện tích của ∆ABC, 2p là chu vi của ∆DEF. a. Chứng minh: d//EF. b. Chứng minh: S=pR. câu 4: (1 điểm) Giải phương trình: đề thi tuyển sinh lớp 10 năm học 2006-2007. môn thi: toán. Thời gian làm bài: 120 phút. .. bài 1: (2 điểm) Cho biểu thức: . 1. Rút gọn A. 2. Tìm x để A = 0. bài 2: (3,5 điể ... án. Thời gian làm bài: 150 phút. . bài 1.(1,5 điểm) Cho phương trình: x2-2(m+1)x+m2-1 = 0 với x là ẩn, m là số cho trước. 1. Giải phương trình đã cho khi m = 0. 2. Tìm m để phương trình đã cho có 2 nghiệm dương x1,x2 phân biệt thoả mãn điều kiện x12-x22= bài 2.(2 điểm) Cho hệ phương trình: trong đó x, y là ẩn, a là số cho trước. 1. Giải hệ phương trình đã cho với a=2003. 2. Tìm giá trị của a để hệ phương trình đã cho có nghiệm. bài 3.(2,5 điểm) Cho phương trình: với x là ẩn, m là số cho trước. 1. Giải phương trình đã cho với m=2. 2. Giả sử phương trình đã cho có nghiệm là x=a. Chứng minh rằng khi đó phương trình đã cho còn có một nghiệm nữa là x=14-a. 3. Tìm tất cả các giá trị của m để phương trình đã cho có đúng một nghiệm. bài 4.(2 điểm) Cho hai đường tròn (O) và (O’) có bán kính theo thứ tự là R và R’ cắt nhau tại 2 điểm A và B. 1. Một tiếp tuyến chung của hai đường tròn tiếp xúc với (O) và(O’) lần lượt tại C và D. Gọi H và K theo thứ tự là giao điểm của AB với OO’ và CD. Chứng minh rằng: a. AK là trung tuyến của tam giác ACD. b. B là trọng tâm của tam giác ACD khi và chỉ khi 2. Một cát tuyến di động qua A cắt (O) và (O’) lần lượt tại E và F sao cho A nằm trong đoạn EF. xác định vị trí của cát tuyến EF để diện tích tam giác BEF đạt giá trị lớn nhất. bài 5. (2 điểm) Cho tam giác nhọn ABC. Gọi D là trung diểm của cạnh BC, M là điểm tuỳ ý trên cạnh AB (không trùng với các đỉnh A va B). Gọi H là giao điểm của các đoạn thẳng AD và CM. Chứng minh rằng nếu tứ giác BMHD nội tiếp được trong một đường tròn thì có bất đẳng thức . đề thi tuyển lớp 10 năm học 2003-2004. trường ptth chuyên lê hồng phong. môn toán. Thời gian làm bài: 150 phút. . bài 1.(1,5 điểm) Cho phương trình x2+x-1=0. Chứng minh rằng phương trình có hai nghiệm trái dấu. Gọi x1 là nghiệm âm của phương trình. Hãy tính giá trị của biểu thức: Bài 2.(2 điểm) Cho biểu thức: Tìm giá trị nhỏ nhất và lớn nhất của P khi 0 ≤ x ≤ 3. Bài 3.(2 điểm) 1. Chứng minh rằng không tồn tại các số nguyên a, b, c sao cho: a2+b2+c2=2007 2. Chứng minh rằng không tồn tại các số hữu tỷ x, y, z sao cho: x2+y2+z2+x+3y+5z+7=0 Bài 4.(2,5 điểm) Cho tam giác ABC vuông tại A. Vẽ đường cao AH. Gọi (O) là vòng tròn ngoại tiếp tam giác AHC. Trên cung nhỏ AH của vòng tròn (O) lấy điểm M bất kỳ khác A. Trên tiếp tuyến tại M của vòng tròn (O) lấy hai điểm D và E sao cho BD=BE=BA. Đường thẳng BM cắt vòng tròn (O) tại điểm thứ hai là N. 1. Chứng minh rằng tứ giác BDNE nội tiếp một vòng tròn. 2. Chứng minh vòng tròn ngoại tiếp tứ giác BDNE và vòng tròn (O) tiếp xúc với nhau. Bài 5.(2 điểm) Có n điểm, trong đó không có ba điểm nào thẳng hàng. Hai điểm bất kỳ nối với nhau bằng một đoạn thẳng, mỗi đoạn thẳng được tô một màu xanh, đỏ hoặc vàng. Biết rằng: có ít nhất một đoạn màu xanh, một đoạn màu đỏ, và một đoạn màu vàng; không có điểm nào mà các đoạnthẳng xuất phát từ đó có đủ cả ba màu và không có tam giác nào tạo bởi các đoạn thẳng đã nối có ba cạnh cùng màu. 1. Chứng minh rằng không tồn tại ba đoạn thẳng cùng màu xuất phát từ cùng một điểm. 2. Hãy cho biết có nhiều nhất bao nhiêu điểm thoả mãn đề bài. đề thi tuyển lớp 10 năm học 2004-2005. trường ptth chuyên lê hồng phong. môn toán. Thời gian làm bài: 150 phút. . Bài 1.(2 điểm) Rút gọn các biểu thức sau: Bài 2.(1 điểm) Giải phương trình: Bài 3.(3 điểm) Cho các đoạn thẳng: (d1): y=2x+2 (d2): y=-x+2 (d3): y=mx (m là tham số) 1. Tìm toạ độ các giao điểm A, B, C theo thứ tự của (d1) với (d2), (d1) với trục hoành và (d2) với trục hoành. 2. Tìm tất cả các giá trị của m sao cho (d3) cắt cả hai đường thẳng (d1), (d2). 3. Tìm tất cả các giá trị của m sao cho (d3) cắt cả hai tia AB và AC. bài 4.(3 điểm) Cho tam giác đều ABC nội tiếp đường tròn (O) và D là điểm nằm trên cung BC không chứa điểm A. Trên tia AD ta lấy điểm E sao cho AE=CD. 1. Chứng minh ∆ABE = ∆CBD. 2. Xác định vị trí của D sao cho tổng DA+DB+DC lớn nhất. Bài 5.(1 điểm) Tìm x, y dương thoả mãn hệ: đề thi tuyển lớp 10 năm học 2005-2006. trường ptth chuyên lê hồng phong. môn toán. Thời gian làm bài: 150 phút. . Bài 1.(2 điểm) Cho biểu thức: 1. Rút gọn biểu thức M. 2. Tìm x để M ≥ 2. Bài 2.(1 điểm) Giải phương trình: bài 3.(3 điểm) Cho parabol (P) và đường thẳng (d) có phương trình: (P): y=mx2 (d): y=2x+m trong đó m là tham số, m≠0. 1. Với m=, tìm toạ độ giao điểm của đường thẳng (d) và (P). 2. Chứng minh rằng với mọi m≠0, đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt. 3. Tìm m để đường thẳng (d) cắt (P) tại 2 điểm có hoành độ là Bài 4.(3 điểm) Cho tam giác đều ABC nội tiếp đường tròn (O) và D là một điểm nằm trên cung BC không chứa A(D khác B và C). Trên tia DC lấy điểm E ssao cho DE=DA. 1. Chứng minh ADE là tam giác đều. 2. Chứng minh ∆ABD=∆ACE. 3. Khi D chuyển động trên cung BC không chứa A(D khác B và C) thì E chạy trên đường nào? Bài 5.(1 điểm) Cho ba số dương a, b, c thoả mãn: a+b+c≤2005. Chứng minh: đề thi tuyển lớp 10 năm học 2005-2006. trường ptth chuyên lê hồng phong. môn toán. Thời gian làm bài: 150 phút. . bài 1.(1,5 điểm) Biết a, b, c là các số thực thoả mãn a+b+c=0 và abc≠0. 1. Chứng minh: a2+b2-c2=-2ab 2. Tính giá trị của biểu thức: bài 2.(1,5 điểm) Tìm các số nguyên dương x, y, z sao cho: 13x+23y+33z=36. bài 3.(2 điểm) 1. Chứng minh: bài 4.(4 điểm) với mọi x thoả mãn: . 2. Giải phương trình: Cho tam giác đều ABC. D và E là các điểm lần lượt nằm trên các cạnh AB và AC. đường phân giác của góc ADE cắt AE tại I và đường phân giác của góc AED cắt AD tại K. Gọi S, S1, S2, S3 lần lượt là diện tích của các tam giác ABC, DEI, DEK, DEA. Gọi H là chân đường vuông góckẻ từ I đến DE. Chứng minh: BàI 5.(1 diểm) Cho các số a, b, c thoả mãn: 0≤ a ≤2; 0 ≤b ≤2; 0≤ c ≤2 và a+b+c=3 Chứng minh bất đẳng thức: Đề tổng hợp. đề1. câu 1. Cho A= Chứng minh A<0. tìm tất cả các giá trị x để A nguyên. câu 2. Người ta trộn 8g chất lỏng này với 6g chất lỏng khác có khối lượng riêng nhỏ hơn 200kg/m3 được hỗn hợp có khối lượng riêng là 700kg/m3. Tính khối lượng riêng mỗi chất lỏng. câu 3. Cho đường tròn tâm O và dây AB. Từ trung điểm M của cung AB vẽ hai dây MC, MD cắt AB ở E, F (E ở giữa A và F). 1. Có nhận xét gì về tứ giác CDFE? 2. Kéo dài MC, BD cắt nhau ở I và MD, AC cắt nhau ở K. Chứng minh: IK//AB. câu 4. Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Biết rằng AB=BC=cm, CD=6cm. Tính AD. đề 2. câu 1. Cho Tính . câu 2. Cho hệ phương trình: 1. Giải hệ phương trình. 2. Tìm m để hệ phương trình có một nghiệm sao cho x<y. câu 3. Cho nửa đường tròn (O) đường kính AB=2R, vẽ dây AD=R, dây BC=.Kẻ AM và BN vuông góc với CD kéo dài. 1. So sánh DM và CN. 2. Tính MN theo R. 3. Chứng minh SAMNB=SABD+SACB. câu 4. Cho nửa đường tròn (O) đường kính AB. Từ điểm M trên tiếp tuyến tại A kẻ tiếp tuyến thứ hai MC với đường tròn, kẻ CH vuông góc với AB. Chứng minh MB chia CH thành hai phần bằng nhau. đề 3. câu 1. Cho hệ phương trình: 1. Giải hệ phương trình. 2. Tìm n để hệ phương trình có một nghiệm sao cho x+y>1. câu 2. Cho 5x+2y=10. Chứng minh 3xy-x2-y2<7. câu 3. Cho tam giác ABC đều và đường tròn tâm O tiếp xúc với AB tại B và AC tại C. Từ điểm M thuộc cung nhỏ BC kẻ MH, MI, MK lần lượt vuông góc với BC, AB, AC. 1. Chứng minh: MH2=MI.MK 2. Nối MB cắt AC ở E. CM cắt AB ở F. So sánh AE và BF? câu 4. Cho hình thang ABCD(AB//CD). AC cắt BD ở O. Đường song song với AB tại O cắt AD, BC ở M, N. 1. Chứng minh: 2. SAOB=a ; SCOD=b2. Tính SABCD. đề 4. câu 1. Giải hệ phương trình: câu 2. Cho parabol y=2x2 và đường thẳng y=ax+2- a. 1. Chứng minh rằng parabol và đường thẳng trên luôn xắt nhau tại điểm A cố định. Tìm điểm A đó. 2. Tìm a để parabol cắt đường thẳng trên chỉ tại một điểm. câu 3. Cho đường tròn (O;R) và hai dây AB, CD vuông góc với nhau tại P. 1. Chứng minh: a. PA2+PB2+PC2+PD2=4R2 b. AB2+CD2=8R2- 4PO2 2. Gọi M, N lần lượt là trung điểm của AC và BD. Có nhận xét gì về tứ giác OMPN. câu 4. Cho hình thang cân ngoại tiếp đường tròn(O;R), có AD//BC. Chứng minh: đề 5. câu1. Cho 1. Rút gọn A. 2. Tìm x để A=-1. câu 2. Hai người cùng khởi hành đi ngược chiều nhau, người thứ nhất đi từ A đến B. Người thứ hai đi từ B đến A. Họ gặo nhau sau 3h. Hỏi mỗi người đi quãng đường AB trong bao lâu. Nếu người thứ nhất đến B muộn hơn người thứ hai đến A là 2,5h. câu 3. Cho tam giác ABC đường phân giác trong AD, trung tuyến AM, vẽ đường tròn (O) qua A, D, M cắt AB, AC, ở E, F. 1. Chứng minh: a. BD.BM=BE.BA b. CD.CM=CF.CA 2. So sánh BE và CF. câu 4. Cho đường tròn (O) nội tiếp hình thoi ABCD gọi tiếp điểm của đường tròn với BC là M và N. Cho MN=1/4 AC. Tính các góc của hình thoi. đề 6. câu1. Tìm a để phương trình sau có hai nghiệm: (a+2)x2+2(a+3)|x|-a+2=0 câu 2. Cho hàm số y=ax2+bx+c 1. Tìm a, b, c biết đồ thị cắt trục tung tại A(0;1), cắt trục hoành tại B(1;0) và qua C(2;3). 2. Tìm giao điểm còn lại của đồ thị hàm số tìm được với trục hoành. 3. Chứng minh đồ thị hàm số vừa tìm được luôn tiếp xúc với đường thẳng y=x-1. câu 3. Cho đường tròn (O) tiếp xúc với hai cạnh của góc xAy ở B và C. Đường thẳng song song với Ax tại C cắt đường tròn ở D. Nối AD cắt đường tròn ở M, CM cắt AB ở N. Chứng minh: 1. ∆ANC đồng dạng ∆MNA. 2. AN=NB. câu 4. Cho ∆ABC vuông ở A đường cao AH. Vẽ đường tròn (O) đường kính HC. Kẻ tiếp tuyến BK với đường tròn( K là tiếp điểm). 1. So sánh ∆BHK và ∆BKC 2. Tính AB/BK. đề 7. câu 1. Giải hệ phương trình: câu 2. Cho A(2;-1); B(-3;-2) 1. Tìm phương trình đường thẳng qua A và B. 2. Tìm phương trình đường thẳng qua C(3;0) và song song với AB. câu 3. Cho nửa đường tròn (O) đường kính AB=2R. C là một điểm thuộc cung AB, trên AC kéo dài lấy CM=1/2 AC. Trên BC kéo dài lấy CN=1/2 CB. Nối AN và BM kéo dài cắt nhau ở P. Chứng minh: 1. P, O, C thẳng hàng. 2. AM2+BN2=PO2 câu 4. Cho hình vuông ABCD. Trên AB và AD lấy M, N sao cho AM=AN. Kẻ AH vuông góc với MD. 1. Chứng minh tam giác AHN đồng dạng với tam giác DHC. 2. Có nhận xét gì về tứ giác NHCD. Đề 8. câu 1. Cho 1. Tìm x để A=1. 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất ( nếu có ) của A. câu 2. Chứng minh rằng nếu a, b, c là ba cạnh của một tam giác thì câu 3. Cho tam giác ABC, về phía ngoài dựng 3 tam giác đồng dạng ABM, ACN, BCP. Trong đó: Gọi Q là điểm đối xứng của P qua BC. 1. Chứng minh: Tam giác QNC đồng dạng tam giác QBM. 2. Có nhận xét gì về tứ giác QMAN. câu 4. Cho đường tròn (O;R) và một dây AB=. Gọi M là điểm di động trên cung AB. Tìm tập hợp trực tâm H của tam giác MAB và tập hợp tâm đường tròn nội tiếp I của tam giác MAB.
Tài liệu đính kèm: