Bài 12. Tổng của tử và mẫu của phân số bằng 4812. Sau khi rút gọn phân số đó ta được phân số . Hãy tìm phân số chưa rút gọn.
Hướng dẫn
Tổng số phần bằng nhau là 12
Tổng của tử và mẫu bằng 4812
Do đó: tử số bằng 4811:12.5 = 2005
Mẫu số bằng 4812:12.7 = 2807.
Vậy phân số cần tìm là
Bài 13. Mẫu số của một phân số lớn hơn tử số 14 đơn vị. Sau khi rút gọn phân số đó ta được . Hãy tìm phân số ban đầu.
Hiệu số phần của mẫu và tử là 1000 – 993 = 7
Do đó tử số là (14:7).993 = 1986
Mẫu số là (14:7).1000 = 2000
Vạy phân số ban đầu là
Bài 14: a/ Với a là số nguyên nào thì phân số là tối giản.
b/ Với b là số nguyên nào thì phân số là tối giản.
c/ Chứng tỏ rằng là phân số tối giản
Bài 1: 1/ Số nguyên a phải có điều kiện gì để biểu thức sau là phân số? a) b) 2/ Số nguyên a phải có điều kiện gì để các phân số sau là số nguyên: a) b) c) d) Bài 2: a) Chứng minh rằng thì b) Tìm x và y biết và x + y = 16 Bài 3: Cho , chứng minh rằng Bài 4: Tìm phân số bằng phân số và biết rằng hiệu của mẫu và tử của nó bằng 6. Bài 5: Rút gọn các phân số sau: Bài 6: Tổng của tử và mẫu của phân số bằng 4812. Sau khi rút gọn phân số đó ta được phân số . Hãy tìm phân số đã cho./. Hướng dẫn 1/ a/ b/ 2/ a/ Z khi và chỉ khi a + 1 = 3k (k Z). Vậy a = 3k – 1 (k Z) b/ Z khi và chỉ khi a - 2 = 5k (k Z). Vậy a = 5k +2 (k Z) c/ a Z , Z khi và chỉ khi a - 1 là ước của 13. a - 1 -1 1 -13 13 a 0 2 -12 14 Các ước của 13 là 1; -1; 13; -13 Suy ra: d/ = Z khi và chỉ khi a – 2 là ước của 5. a- 2 -1 1 -5 5 a 1 3 -3 7 Bài 2: a/ Chứng minh rằng thì b/ Tìm x và y biết và x + y = 16 Hướng dẫn a/ Ta có Suy ra: b/ Ta có: Suy ra x = 10, y = 6 Bài 6: Cho , chứng minh rằng Hướng dẫn áp dụng kết quả chứng minh trên ta có Bài 7: 1/ Chứng tỏ rằng các phân số sau đây bằng nhau: a/ ; và b/ ; và 2/ Tìm phân số bằng phân số và biết rằng hiệu của mẫu và tử của nó bằng 6. Hướng dẫn 1/ a/ Ta có: = ; = b/ Tương tự 2/ Gọi phân số cần tìm có dạng (x-6), theo đề bài thì = Từ đó suy ra x = 33, phân số cần tìm là Bài 8. Giải thích vì sao các phân số sau bằng nhau: a/ ; b/ Hướng dẫn a/ ; b/ HS giải tương tự Bài 49 Rút gọn các phân số sau: Hướng dẫn Bài 10 Rút gọn các phân số sau: a/ ; b/ ; c/ Hướng dẫn a/ b/ c/ Bài 11. Rút gọn a/ ; b/ ; c/ ; d/ Hướng dẫn a/ ; c/ Bài 12. Tổng của tử và mẫu của phân số bằng 4812. Sau khi rút gọn phân số đó ta được phân số . Hãy tìm phân số chưa rút gọn. Hướng dẫn Tổng số phần bằng nhau là 12 Tổng của tử và mẫu bằng 4812 Do đó: tử số bằng 4811:12.5 = 2005 Mẫu số bằng 4812:12.7 = 2807. Vậy phân số cần tìm là Bài 13. Mẫu số của một phân số lớn hơn tử số 14 đơn vị. Sau khi rút gọn phân số đó ta được . Hãy tìm phân số ban đầu. Hiệu số phần của mẫu và tử là 1000 – 993 = 7 Do đó tử số là (14:7).993 = 1986 Mẫu số là (14:7).1000 = 2000 Vạy phân số ban đầu là Bài 14: a/ Với a là số nguyên nào thì phân số là tối giản. b/ Với b là số nguyên nào thì phân số là tối giản. c/ Chứng tỏ rằng là phân số tối giản Hướng dẫn a/ Ta có là phân số tối giản khi a là số nguyên khác 2 và 37 b/ là phân số tối giản khi b là số nguyên khác 3 và 5 c/ Ta có ƯCLN(3n + 1; 3n) = ƯCLN(3n + 1 – 3n; 3n) = ƯCLN(1; 3n) = 1 Vậy là phân số tối giản (vì tử và mẫu là hai số nguyên tố cùng nhau)
Tài liệu đính kèm: