Bất kì một môn học nào trong trường phổ thông cũng có nhiệm vụ là thông qua đặc điểm bộ môn mình phối hợp với cac bộ môn khác với các hoạt động trong nhà trường góp phần giáo dục toàn diện cho học sinh nhằm đào tạo những con người mới có tri thức
Môn toán học có vai trò rất quan trọng là cơ sở chủ yếu của nhiều ngành khoa học, đặc biệt là tin học. Sự phát triển của tin học đang là một trong những động lực chủ yếu làm cho nền kinh tế thế giới chuyển sang một giai đoạn mới về chất. Giai đoạn kinh tế tri thức. Ngoài ra môn toán còn có khả năng to lớn giúp học sinh phát triển các năng lực và phẩm chất trí tuệ. Do tính chất trừu tượng, tính chính xác, tư duy suy luận logic .Toán học chính là “môn thể thao của trí tuệ”. Rèn luyện cho học sinh tính thông minh sáng tạo, làm cơ sở cho việc trau dồi tri thức văn hoá.
Cộng hoà xã hội chủ nghĩa việt nam độc lập - tự do - hạnh phúc -----------ĐĐĐ----------- Sơ yếu lý lịch Họ và tên: Ngày tháng năm sinh: Năm vào ngành: Chức vụ: Giáo viên Đơn vị công tác: Trường THCS Trình độ chuyên môn: Đại học Bộ môn giảng dạy: Toán Phần I: Đặt Vấn Đề Lý do chọn đề tài: Bất kì một môn học nào trong trường phổ thông cũng có nhiệm vụ là thông qua đặc điểm bộ môn mình phối hợp với cac bộ môn khác với các hoạt động trong nhà trường góp phần giáo dục toàn diện cho học sinh nhằm đào tạo những con người mới có tri thức Môn toán học có vai trò rất quan trọng là cơ sở chủ yếu của nhiều ngành khoa học, đặc biệt là tin học. Sự phát triển của tin học đang là một trong những động lực chủ yếu làm cho nền kinh tế thế giới chuyển sang một giai đoạn mới về chất. Giai đoạn kinh tế tri thức. Ngoài ra môn toán còn có khả năng to lớn giúp học sinh phát triển các năng lực và phẩm chất trí tuệ. Do tính chất trừu tượng, tính chính xác, tư duy suy luận logic..Toán học chính là “môn thể thao của trí tuệ”. Rèn luyện cho học sinh tính thông minh sáng tạo, làm cơ sở cho việc trau dồi tri thức văn hoá. Trong quá trình dạy học sinh môn toán lớp 7 có phần “ Tìm x” tôi nhận thấy học sinh còn nhiều vướng mắc về phương pháp giải, quá trình giải thiếu logic và chưa chặt chẽ, chưa xét hết các trường hợp xảy ra. Lí do là học sinh chưa nắm vững quy tắc đổi dấu, chuyển vế. Đặc biệt biểu thức về giá trị tuyệt đối của một số, của một biểu thức, chưa biết vận dụng biểu thức này vào giải bài tập, chưa phân biệt và chưa nắm được các phương pháp giải đối với từng dạng bài tập. Mặt khác phạm vi kiến thức ở lớp 6, 7 chưa rộng, học sinh mới bắt đầu làm quen về vấn đề này, nên chưa thể đưa ra đầy đủ các phương pháp giải một cách có hệ thống và phong phú được. Mặc dù chương trình sách giáo khoa sắp xếp hệ thống và logic hơn sách cũ rất nhiều, có lợi thế để dạy học sinh về vấn đề này , nhưng tôi thấy để giải bài tập về tìm x thì học sinh vẫn còn lúng túng trong việc tìm ra phương pháp giải và việc kết hợp với điều kiện của biến để xác định giá trị phải tìm là chưa chặt chẽ. Chính vì vậy, trong khi giảng dạy về vấn đề này tôi nghĩ cần phải làm thế nào để học sinh biết áp dụng định nghĩa tính chất về giá trị tuyệt đối để phân chia được các dạng, tìm ra được phương pháp giải đối với từng dạng bài. Từ đó học sinh thấy tự tin hơn khi gặp loại bài tập này và có kỹ năng giải chặt chẽ hơn, có ý thức tìm tòi, sử dụng phương pháp giải nhanh gọn, hợp lí. Chính vì những lí do trên mà tôi chọn và trình bày kinh nghiệm “ Hướng dẫn học sinh lớp 7 giải dạng toán “Tìm x”” Phạm vi đề tài: Đề tài này giới hạn việc nghiên cứu trong phạm vi một số bài toán, dạng toán về tìm x và phát triển một số dạng toán khác có liên quan: - Dạng chứa biến với số mũ lớn hơn hoặc bằng 2 -Dạng: |A(x)| = |B(x)| hay |A(x)| - |B(x)| = 0 Củng cố cho học sinh lớp 7 một số kiến thức để giải một số dạng giải bài toán tìm x . Cũng từ đó mà phát triển tư duy lôgic cho học sinh, phát triển năng lực giải toán cho các em, giúp cho bài giải của các em hoàn thiện hơn, chính xác hơn và còn giúp các em tự tin hơn khi làm toán. 3. Thời gian thực hiện đề tài: Đề tài dược thặc hiện trong năm học 2008 - 2009 4. Đối tượng nghiên cứu của đề tài: Là một nhóm học sinh lớp 7A trường THCS Thắng Lợi Phần II: giảI quyết vấn đề A: khảo sát thực tế Với học sinh lớp 7 thì việc giải dạng toán “ Tìm x” gặp rất nhiều khó khăn do học sinh chưa học qui tắc giải về phương trình, các phép biến đổi tương đương Chính vì vậy mà khi gặp dạng toán này học sinh thường ngại, lúng túng không tìm được hướng giải và khi giải hay mắc sai lầm. Khi chưa hướng dẫn học sinh giải bằng cách áp dụng đề tài, học sinh giải thường vướng mắc như sau: Ví dụ 1 : tìm x biết x- 2x +3 = 6 - x + Một số HS chưa rõ tìm x như thế nào ? Hoặc khi chuyển vế không đổi dấu . Ví dụ 2: Tìm x biết |x-5| -x = 3 + Học sinh không biết xét tới điều kiện của x, vẫn xét 2 trường hợp xảy ra: x – 5 – x = 3 hoặc 5 – x – x = 3 +Đưa về dạng | x – 5| = 3 +x => x-5 = x+3 hoặc x- 5 = -(3+x) và học sinh chưa hiểu được ở đây 3 + x có chứa biến x. + Có xét tới điều kiện của x để x – 5 ³ 0; x – 5 < 0 nhưng đối với mỗi trường hợp học sinh chưa kết hợp với điều kiện của x, hoặc kết hợp chưa chặt chẽ. Ví dụ 3: Tìm x biết | 2x – 3| = 5 Học sinh chưa nắm được rằng ở đây đẳng thức luôn xảy ra (vì 5>0) và có thể các em đi xét giá trị của biến để 2x – 3 ³ 0 hoặc 2x –3 < 0 và giải 2 trường hợp tương ứng, cách làm này của học sinh chưa nhanh gọn. Khi tôi áp dụng đề tài này vào quá trình hướng dẫn học sinh giải được bài, hiểu rất rõ cơ sở của việc giải bài toán đó. Còn ở ví dụ 2 các em đã biết lựa chọn ngay cách giải nhanh (và hiểu được cơ sở của phương pháp giải đó là áp dụng tính chất; hai số đối nhau có giá trị tuyệt đối bằng nhau). Cụ thể : |2x-3|= 5 ( vì 5 > 0) =>2x – 3 = 5 hoặc 2x – 3 = -5 Kết quả điều tra khảo sát Qua khảo sát khi chưa áp dụng đề tài tôi khảo sát lớp 7A trường THCS Thắng Lợi với đề bài: Tìm x biết: a) 3x - 2 = 5 ( 2 điểm ) b) 6x - 5x2 = 2 - 5x2 ( 3 điểm ) c) |2x – 5| = 7 ( 3điểm) d) |5x – 3| - x = 7 ( 2 điểm) Kết quả đạt được như sau: Giỏi Khá Trung bình Yếu và kém 7A 6 em 11 em 16 em 5 Tôi thấy học sinh còn rất lúng túng về phương pháp giải, chưa nắm vững phương pháp giải đối với từng dạng bài, quá trình giải chưa chặt chẽ, chưa kết hợp được kết quả tìm ra với điều kiện xảy ra, chưa lựa chọn được phương pháp giải nhanh, hợp lí. Kết quả thấp là do học sinh vướng mắc những điều tôi đã nêu ra ( ở phần trên) và phần lớn các em xét chưa được chặt chẽ ở câu c , d. B: Các bước thực hiện I. Những kiến thức cơ bản liên quan đến bài toán tìm x Yêu cầu học sinh nắm vững và ghi nhớ các kiến thức cần thiết để giải bài tập tìm x, một điều khó khăn khi dạy học sinh lớp 7 về vấn đề này đó là học sinh chưa được học về phương trình, bất phương trình, các phép biến đổi tương đương, hằng đẳng thức nên có những phương pháp dễ xây dựng thì chưa thể hướng dẫn học sinh được, vì thế học sinh cần nắm vững được các kiến thức cơ bản sau: Qui tắc bỏ dấu ngoặc, qui tắc chuyển vế. Tìm x trong đẳng thức: Thực hiện phép tính , chuyển vế đưa về dạng ax = b => x = Định lí và tính chất về giá trị tuyệt đối. |A| = |-A| |A| ³ 0 Định lí về dấu nhị thức bậc nhất. II. Những biện pháp tác động giáo dục và giải pháp khoa học tiến hành. Từ các quy tắc , định nghĩa, tính chất về giá trị tuyệt đối hướng dẫn học sinh phân chia từng dạng bài, phát triển từ dạng cơ bản sang các dạng khác, từ phương pháp giải dạng cơ bản, dựa vào định nghĩa, tính chất về giá trị tuyệt đối tìm tòi các phương pháp giải khác đối với mỗi dạng bài, loại bài. Biện pháp cụ thể như sau: Một số dạng cơ bản: 1.1. Dạng cơ bản A(x) = B(x) 1.1.1 . Cách tìm phương pháp giải : Làm thế nào để tìm ra x ? cần áp dụng kiến thức nào ( sử dụng quy tắc chuyển vế ) ? khi làm cần lưu ý điều gì ?( Lưu ý khi chuyển vế phải đổi dấu ) . 1.1.2. Phương pháp giải Sử dụng quy tắc chuyển vế chuyển các hạng tử chứa biến x sang vế trái , còn chuyển các hệ số tự do sang vế phải . Thực hiện các phép tính thu gọn và tìm x . 1.1.3. ví dụ Tìm x , biết 2x - 3 = 5x + 6 Làm thế nào? Chuyển hạng tử nào sang vế nào ? ( Chuyển 5x từ vế phải sang vế trái và dổi dấu , chuyển -3 từ vế trái sang vế phải và đổi dấu thành +3) Giải 2x - 3 = 5x + 6 2x - 5x = 6 + 3 - 3x = 9 x = 9 : (-3) x = -3 ( GV lưu ý HS cả cách trình bày ) 1.2. Dạng cơ bản |A(x)| =B với B³ 0 1.2.1 Cách tìm phương pháp giải: Đẳng thức có xảy ra không? Vì sao? Nếu đẳng thức xảy ra thì cần áp dụng kiến thức nào để bỏ được dấu giá trị tuyệt đối (áp dụng tính chất giá trị tuyêt đối của hai số đối nhau thì bằng nhau). 1.2.2. Phương pháp giải: Ta lần lượt xét A(x) = B và A(x) = -B, giải hai trường hợp. 1.2.3. Ví dụ: Ví dụ 1: Tìm x biết |x- 5| = 3 Đặt câu hỏi bao quát chung cho bài toán: Đẳng thức có xảy ra không? Vì sao? (có xảy ra vì |A| ³ 0 , 3 > 0). Cần áp dụng kiến thức nào để giải, để bỏ được thì bằng nhau). Bài giải |x-5| = 3 ị x – 5 = 3 ; hoặc x – 5 = -3 + Xét x - 5 = 3 ị x = 8 + Xét x – 5 = -3 ị x = 2 Vậy x = 8 hoặc x = 2 Từ ví dụ đơn giản, phát triển đưa ra các ví dụ khó dần. Ví dụ 2: Tìm x biết: 3|9-2x| -17 = 16 Với bài này tôi đặt câu hỏi: “Làm thế nào để đưa được về dạng cơ bản đã học?”. Từ đó học sinh phải biến đổi để đưa về dạng |9-2x|=11 Bài giải 3|9 - 2x| - 17 = 16 ị 3|9 - 2x| = 33 ị |9 - 2x| = 11 ị 9 - 2x = 11 hoặc 9 – 2x = -11 + Xét 9 - 2x = 11 ị 2x = -2 ịx = -1 + Xét 9 - 2x = -11 ị 2x = 20 ị x= 10 Vậy x= -1 hoặc x = 10 1.3.. Dạng |A(x)| = B(x) ( trong đó Bx là biểu thức chứa biến x) 1.3.1. Cách tìm phương pháp giải: Cũng đặt câu hỏi gợi mở như trên, học sinh thấy được rằng đẳng thức không xảy ra nếu B(x) < 0 ị Cần áp dụng kiến thức nào để có thể dựa vào dạng cơ bản trên để suy luận tìm ra cách giải không? Có thể tìm ra mấy cách? 1.3.2. Phương pháp giải: Cách 1: ( Dựa vào tính chất) |A(x) |= B(x) Với điều kiện B(x) ³ 0 ta có A(x) = B(x) hoặc A(x) = - B(x)( giải 2 trường hợp với điều kiện B(x) ³ 0) Cách 2: Dựa vào định nghĩa xét các quá trình của biến của biểu thức chứa dấu giá trị tuyệt đối để bỏ dấu giá trị tuyệt đối. |A(x) | = B(x) + Xét A(x) ³ 0 ị x ? Ta có A(x) = B(x) ( giải để tìm x thoả mãn A(x) ³ 0) + Xét A(x) < 0 ị x? Ta có A(x) = - B(x) ( giải để tìm x thoả mãn A(x) < 0) + Kết luận: x = ? Lưu ý: Qua hai dạng trên tôi cho học sinh phân biệt rõ sự giống nhau (đều chứa 1 dấu giá trị tuyệt đối) và khác nhau ( |A(x)| = m ³ 0 dạng đặc biệt vì m > 0) của 2 dạng. Nhấn mạnh cho học sinh thấy rõ được phương pháp giải loại đẳng thức chứa 1 dấu giá trị tuyệt đối, đó là đưa về dạng |A | = B(Nếu B ³ 0 đó là dạng đặc biệt còn Nếu B < 0 thì đẳng thức không xảy ra. Nếu B là biểu thức chứa biến là dạng 2 và giải bằng cách 1) hoặc ta đi xét các trường xảy ra đối với biểu thức trong giá trị tuyệt đối. 1.3.3. Ví dụ: Ví dụ 1: Tìm x biết: |9-7x| = 5x -3 Cách 1: Với 5x – 3 ≥ 0 ị 5x ³ 3 ị x ³ Ta có 9 - 7x = 5x - 3 hoặc 9 – 7x = - (5x-3) + Nếu 9 - 7x = 5x - 3 ị 12x = 12 ị x = 1(thoả mãn) + Nếu 9-7x = -(5x-3) ị 2x = 6 ị x = 3(thoả mãn) Vậy x= 1 hoặc x= 3 Cách 2: + Xét 9 - 7x ³ 0 ị 7x ≤ 9 ị x ≤ Ta có 9 – 7x = 5x – 3 ị x = 1(thoả mãn) + Xét 9- 7x 9 ị x > Ta có - 9 + 7x = 5x – 3 ị x = 3(thoả mãn) Vậy x = 1 hoặc x = 3 Ví dụ 2: Tìm x biết |x- 5| - x = 3 Cách 1: | x – 5| - x = 3 ị |x – 5| = 3 + x Với 3 + x ³ 0 ị x ³ - 3 Ta có x- 5 = 3 + x hoặc x – 5 = -(3 + x) + Nếu x – 5 = 3 + x ị 0x = 8(loại) + Nếu x – 5 = -3 – x ị 2x = 2 ị x = 1 thoả mãn. Vậy x = 1 Cách 2: | x – 5| - x = 3 + Xét x – 5 ³ 0 ị x ³ 5 Ta có x – 5 – x = 3 ị 0x = 8 (loại) +Xét x – 5 < 0 ị x < 5 Ta có –x + 5 – x = 3 ị - 2x = - 2 ị x = 1 thoả mãn Vậy x = 1 1.4. Dạng 4: |A(x)| + |B(x)| =0 1.4.1 . Cách tìm phương pháp giải: Với dạng này tôi yêu cầu học sinh nhắc lại kiến thức về đặc điểm của giá trị tuyệt đối của một số (giá trị tuyệt đối của một số là một số không âm).Vậy tổng của hai số không âm bằng không khi nào?(cả hai số bằng 0). Vậy ở bài này tổng trên bằng 0 khi nào? (A(x) = 0 và B(x) =0). Từ đó ta tìm x thoả mãn hai điều kiện: A(x) = 0 và B(x) = 0. 1.4.2. Phương pháp giải: Ta tìm x thoả mãn hai điều kiện A(x) = 0 và B(x) = 0. 1.4.3. Ví dụ: Tìm x biết: a) |x+3| + |x2+x| = 0 b)|x2-3x| + |(x+1)(x-3)| = 0 Bài giải: a) |x + 1| + |x2 + x| = 0 ị |x + 1| = 0 và |x2 + x| = 0 *) Xét |x + 1| = 0 ị x + 1 = 0 ị x = -1 (*) *) Xét |x2 + x| = 0 ị x2 + x = 0 ịx(x + 1) = 0 ị x = 0 hoặc x+ 1 = 0 ị x = 0 hoặc x = -1 (**) Từ (*) và (**) suy ra x = -1 b) |x2 -3x| + |(x + 1)(x - 3)| = 0 ị |x2 - 3x| = 0 và |(x + 1)(x - 3)| = 0 ị x2 - 3x = 0 và (x + 1)(x - 3)| = 0 *) Xét x2- 3x = 0 ị x(x - 3) = 0 ị x = 0 hoặc x = 3 (*) *) Xét (x + 1)(x - 3) = 0 ị x + 1 = 0 hoặc x - 3 = 0 ị x= -1 hoặc x = 3 (**) Từ (*) và (**) ta được x = 3 Lưu ý: ở dạng này tôi lưu ý cho học sinh phải khi kết luận giá trị tìm được thì giá trị đó phải thoả mãn cả hai đẳng thức |A(x)| = 0 và |B(x)| = 0 Dạng mở rộng: 2.1. Dạng chứa biến x mũ lớn hơn hoặc bằng 2 2.1.1. Cách tìm phương pháp giải : HS khi gặp phải các biểu thức chứa mũ ở biến thì bỡ ngỡ chưa biết làm thế nào ? 2.1.2. Phương pháp giải : Sử dụng các quy tắc biến đổi thông thường , sau khi biến đổi các biến của x chứa mũ sẽ bị triệt tiêu . 2.1.3. ví dụ Tìm x biết 2x - 3x2 = 2 - 3x2 ( Ta chỉ cần biến đổi -3x2 từ vế phải sang vế trái thành 3x2 sẽ triệt tiêu với -3x2 ở vế trái ) 2.2. Dạng |A(x)| = |B(x)| hay |A(x)| - |B(x)| = 0 Cách tìm phương pháp giải: Trước hết tôi đặt vấn đề để học sinh thấy được đây là dạng đặc biệt( vì đẳng thức luôn xảy ra do cả 2 vế đều không âm), từ đó các em tìm tòi hướng giải. Cần áp dụng kiến thức nào về giá trị tuyệt đối để bỏ được dấu giá trị tuyệt đối và cần tìm ra phương pháp giải ngắn gọn. Có hai cách giải: Xét các trường hợp xảy ra của A(x) và B(x)(dựa theo định nghĩa) và cách giải dựa vào tính chất 2 số đối nhau có giá trị tuyệt đối bằng nhau để suy ra ngay A(x) = B(x); A(x) = -B(x) (vì ở đây cả hai vế đều không âm do |A(x)| ≥ 0 và |B(x)| ≥ 0). Để học sinh lựa chọn ra cách giải nhanh, gọn, hợp lí để các em có ý thức tìm tòi trong giải toán và ghi nhớ được. Phương pháp giải: Cách 1: Xét các trường hợp xảy ra của A(x) và B(x) để phá giá trị tuyệt đối. Cách 2: Dựa vào tính chất hai số đối nhau có giá trị tuyệt đối bằng nhau ta tìm x thoả mãn một trong hai điều kiện A(x) = B(x) hoặc A(x) = -B(x) Ví dụ: Ví dụ1: Tìm x biết |x + 3| = |5 - x| |x+3| = |5-x| =>x = 1 Vậy x = 1 Ví dụ 2: Tìm x biết: |x-3| + |x+2| =7 Bước 1: Lập bảng xét dấu: Trước hết cần xác định nghiệm của nhị thức : x – 3 = 0 ị x = 3 ; x + 2 = 0 ị x = -2 Trên bảng xét dấu xếp theo thứ tự giá trị của x phải từ nhỏ đến lớn. Ta có bảng sau: X -2 3 x – 3 - - 0 + x + 2 - 0 + + Bước 2: Dựa vào bảng xét dấu các trường hợp xảy ra theo các khoảng giá trị của biến. Khi xét các trương hợp xảy ra không được bỏ qua điều kiện để A = 0 mà kết hợp với điều kiện để A > 0 (ví dụ xét khoảng – 2 < 3) Cụ thể: Dựa vào bảng xét dấu ta có các trường hợp sau: *) Nếu x < - 2 ta có x- 3 < 0 và x + 2 < 0 nên ỗx - 3ờ= 3- x và ờx + 2ờ= -x – 2 Đẳng thức trở thành: 3- x – x –2 = 7 -2x + 1 = 7 -2x = 6 x = -3 ( thoả mãn x<-2) *) Nếu 2 x < 3 ta có ỗx - 3ỗ= 3 - x và ỗx + 2ỗ= x + 2 Đẳng thức trở thành: 3- x + x +2 = 7 0x + 5 = 7 (vô lí) *) Nếu x 3 đẳng thức trở thành: x- 3 + x + 2 = 7 2x – 1 = 7 2x = 8 x = 4 (thoả mãn x 3) Vậy x = -3 ; x = 4 Lưu ý: Qua 2 cách giải trên tôi cho học sinh so sánh để thấy được lợi thế trong mỗi cách giải. ở cách giải 2 thao tác giải sẽ nhanh hơn, dễ dàng xét dấu trong các khoảng giá trị hơn, nhất là đối với các dạng chứa 3; 4 dấu giá trị tuyệt đối (để nên ý thức lựa chọn phương pháp giải). Ví dụ3: Tìm x biết: | x - 1| - 2| x - 2| + 3| x - 3| = 4 Nếu giải bằng cách 1 sẽ phải xét nhiều trường hợp xảy ra, dài và mất nhiều thời gian. Còn giải bằng cách 2 thì nhanh gọn hơn rất nhiều, vì dựa vào bảng xét dấu ta thấy ngay có 4 trường hợp xảy ra. Mặt khác, với cách giải 2 ( lập bảng xét dấu ) xẽ dễ mắc sai sót về dấu trong khi lập bảng, nên khi xét dấu các biểu thức trong dấu giá trị tuyệt đối cần phải hết sức lưu ý và tuân theo đúng qui tắc lập bảng. Một điều cần lưu ý cho học sinh đó là kết hợp trường hợp ³ trong khi xét các trường hợp xảy ra để thỏa mãn biểu thức ³ 0 ( tôi đưa ra ví dụ cụ thể để khắc phục cho học sinh ). Ví dụ 4 : Tìm x biết | x - 4 | + | x - 9 | = 5 Lập bảng xét dấu x 4 9 x - 4 - 0 + | + x - 9 - | - 0 + Xét các trường hợp xảy ra, trong đó với x ³ 9 thì đẳng thức trở thành x – 4 + x - 9 = 5 x = 9 thỏa mãn x ³ 9 Như vậy nếu không kết hợp với x = 9 để x – 9 = 0 mà chỉ xét tới x > 9 để x - 9 > 0 thì xẽ bỏ qua mất giá trị x = 9 Từ những dạng cơ bản đó đưa ra các dạng bài tập mở rộng khác về loại toán này: dạng lồng dấu, dạng chứa từ 3 dấu giá trị tuyệt đối trở lên. *Xét |4 - x| + |x - 9| = -5 . Điều này không xảy ra vì |4 - x| + |x – 9| ≥ 0 Vậy 4 ≤ x ≤ 9 ở ví dụ 3:| x - 1| - 2| x - 2| + 3| x - 3| = 4 (1) *Xét 1 < x ≤ 2: (1) ị x – 1 - 2(2 - x) + 3(3 - x) = 4 ị x – 1 – 4 + 2x + 9 - 3x = 4 ị 0x = 0(Thoả mãn với mọi x) ị 1 < x ≤ 2 *Xét 2 < x ≤ 3: (1) ị x- 1 - 2(x - 2) + 3(3 - x) = 4 ị x - 1 - 2x + 4 + 9 -3x = 4 ị x = 2( loại) *Xét x > 3: (1) ị x - 1 - 2(x - 2) +3(x - 3) = 4 ị x-1-2x+4 +3x-9 = 4 ị x=5 (TM) Vậy: 1 ≤ x ≤ 2 và x = 5 3. Phương pháp giải và cách tìm phương pháp giải: Sau khi giới thiệu cho học sinh hết các dạng bài tôi chốt lại cho học sinh: Phương pháp giải dạng toán “tìm x”: Phương pháp 1 : Sử dụng quy tắc chuyển vế đưa các biến về một vế , các hệ số về một vế và triệt tiêu các biến chứa mũ . Phương pháp 2: Sử dụng tính chất |A| = |-A| và |A| ³ 0 để giải các dạng |A |= |-A| và |A(x)| = |B(x)|, |A(x)| = B(x). Phương pháp 3: Xét khoảng giá trị của biến(dựa vào định nghĩa) để bỏ dấu giá trị tuyệt đối, thường sử dụng để giải đối với dạng |A(x)| = B(x) hay |A(x)|=|B(x)|+C( nhưng đây là dạng cơ bản nhất để giải loại toán này – phương pháp chung nhất). Cách tìm tòi phương pháp giải: Cốt lõi của đường lối giải bài tập tìm x , đặc biệt là tìm x trong đẳng thức chứa dấu giá trị tuyệt đối, đó là tìm cách bỏ dấu giá trị tuyệt đối. + Trước hết xác định được dạng bài rơi vào dạng đặc biệt không? (Có đưa về dạng đặc biệt được không). Nếu là dạng đặc biệt |A|=B (B³0) hay |A|=|B| thì áp dụng tính chất về giá trị tuyệt đối(giải bằng cách đặc biệt – phương pháp 1 đã nêu) không cần xét tới điều kiện của biến. + Khi đã xác định được dạng cụ thể nghĩ cách nào làm nhanh gọn hơn để lựa chọn. C: Kết quả Với hệ thông các phương pháp cơ bản dược khai thác, nâng cao, đồng thời tìm tòi các phương pháp để giải các dạng, toán về “tìm x”. Với quá trình nâng dần từ dễ đến khó học sinh lớp tôi dạy đã biết cách làm các dạng bài toán tìm x một cách nhanh và gọn. Học sinh không còn lúng túng và thấy ngại khi gặp dạng bài tập này, góp phần vào việc nâng cao chất lượng học tập trong nhà trường. Cụ thể khi làm phiếu điều tra lớp 7A trường THCS Thắng Lợi kết quả nhận được như sau: Học sinh của tôi không còn lúng túng về phương pháp giải cho từng dạng bài trên. Biết lựa chọn cách giải hợp lí, nhanh, gọn. Hầu hết đã trình bày được lời giải chặt chẽ. Kết quả cụ thể như sau: Giỏi Khá Trung bình Yếu 7A 10 em 15 12 1 D:Bài học kinh nghiệm Mặcdù kết quả chưa cao, song phần nào cũng đem lại cho tôI niềm vui, niềm tin, động viên khích lệ tôi trong quá trình giảng dạy Qua quá trình giảng dạy toán đại số nói chung và toán tìm x nói riêng tôi rút ra bài học kinh nghiệm như sau: 1. Hệ thống kiến thức bổ trợ cho dạng toán sắp dạy. 2. Hệ thống các phương pháp cơ bản để giải loại toán đó. 3. Khái quát hoá, tổng quát hoá từng dạng, từng loại bài tập. 4. Trêncơ sở kiến thức cơ bản, giáo viên phải tìm tòi, khai thác sâu kiến thức, không ngừng phát huy trí thông minh sáng tạo của học sinh. 5. Điều quan trọng là người giáo viên phải thường xuyên học hỏi, sưu tầm, tích luỹ, học qua sách vở, tài liệu, qua đồng nghiệp để không ngừng vươn lên, nâng caô tri thức, tự hoàn thiện mình, có như vậy mới đáp ứng được yêu cầu của sự nghiệp giáo dục đào tạo. Phần iii: kết thúc vấn đề Trên đây tôi đưa ra một số bài toán tìm x và hướng dẫn học sinh giải với từng bài toán cụ thể.Những bài toán trên đòi hỏi sự vận dụng linh hoạt nhanh nhẹn một số dạng toán về tìm x, nên giáo viên phải luôn luôn đổi mới phương pháp giảng dạy, kết hợp với biện pháp: “Tích cực hoá hoạt động học tập của học sinh”. Khơi dậy và phát triển khả năng tự học, nhằm hình thành cho học sinh tư duy tích cực, độc lập, sáng tạo, nắm vững kiến thức cơ bản. Ghi nhớ và tiếp thu kiến thức mới, đem lại hứng thú học tập cho học sinh. Trong quá trình thực hiện đề tài tôi đã cố gắng sắp xếp nội dung sao cho phù hợp với đối tượng dạy, song cũng không tránh khỏi thiếu sót. Rất mong được sự đóng góp nhiệt tình của các đồng nghiệp Xin trân thành cảm ơn. Thắng Lợi ngày 26 tháng 4 năm 2009 Tác giả Nguyễn Thị Kim Thoa Tài liệu tham khảo Vũ Hữu Bình – Nâng cao và phát triển Toán 7- NXB Giáo Dục – 2003 Bùi Văn Tuyên - Bài tập nâng cao và một số chuyên đề Toán 7- NXB Giáo dục – 2004 Sách giáo khoa Toán 7 – NXB Giáo dục – 2007 Vũ Hữu Bình – Toán bồi dưỡng học sinh lớp 7- NXB Giáo dục – 2004.
Tài liệu đính kèm: