Giáo án môn Hình học 7 - Tiết 19, 20

Giáo án môn Hình học 7 - Tiết 19, 20

A, Mục tiêu

 Khắc sâu kiến thức

. Tổng ba góc của một tam giác bằng 1800

. Trong tam giác vuông hai góc nhọn có tổng số đo bằng 900

. Định nghĩa góc ngoài, định lí về tính chất góc ngoài của tam giác

. Rèn kĩ năng tính số đo góc

. Rèn kĩ năng suy luận

B, Chuẩn bị

GV : thước thẳng, thước đo góc, bảng phụ, com pa

HS : thước thẳng, thước đo góc, bảng nhóm, com pa

C, Tiến trình dạy học

 

doc 7 trang Người đăng hoangquan Lượt xem 1157Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án môn Hình học 7 - Tiết 19, 20", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
. 
Tuần 10 
 Tiết 19: Luyện tập
Ngày dạy ../../ 2010
A, Mục tiêu 
 Khắc sâu kiến thức 
. Tổng ba góc của một tam giác bằng 1800 
. Trong tam giác vuông hai góc nhọn có tổng số đo bằng 900
. Định nghĩa góc ngoài, định lí về tính chất góc ngoài của tam giác 
. Rèn kĩ năng tính số đo góc 
. Rèn kĩ năng suy luận 
B, Chuẩn bị 
GV : thước thẳng, thước đo góc, bảng phụ, com pa
HS : thước thẳng, thước đo góc, bảng nhóm, com pa
C, Tiến trình dạy học 
Hoạt động của thầy
Hoạt động của trò
Hoạt động 1: Kiểm tra (10’) 
1, Cho tam giác ABC có . Tia phân giác của góc A cắt BC tại D . Tính ADC , ADB
GV: hướng dẫn theo sơ đồ phân tích đi lên 
2, a, Vẽ ABC kéo dài cạnh BC về hai phía chỉ ra góc ngoài tại đỉnh B, đỉnh C 
b, Theo định lí về t/c góc ngoài của tam giác thì góc ngoài tại đỉnh B, đỉnh C bằng tổng những góc nào ? lớn hơn những góc nào của tam giác ABC
Hoạt động 2: Luyện tập bài tập (15’) 
Bài 6 ( sgk) vẽ hình ra bảng phụ 
? Đứng tại chỗ trả lời từng hình giáo viên ghi 
H
K
400
1
2
A
I
x
B
? Ngoài cách này còn cách nào khác nữa không ?
x
250
? Nêu cách tính x trong hình 56
1
x
600
? Hãy tính góc P
H
B
x
550
A
K
E
Hoạt động 3: Luyện tập bài tập có hình vẽ (17’)
Bài 8( sgk) 
y
x
1
A
2
C
400
B
? Viết giả thiết kết luận bằng kí hiệu 
? Quan sát hình vẽ dựa vào cách nào để chứng minh Ax // BC 
? Chứng minh cụ thể 
? Ngoài cách chứng minh trên còn cách nào khác nữa ?
Hoạt động 4: Hướng dẫn về nhà (3’) 
Về nhà học thuộc lí thuyết hiểu kĩ về định lí tổng các góc của tam giác , định lí góc ngoài của tam giác, định lí về tam giác vuông 
Luyện giải các bài tập áp dụng các định lí trên 
Làm bài tập 14-18 ( sbt) 
Hướng dẫn bài 16:( bảng phụ có hình vẽ ) 
 vì sao 
? 
 Đọc trước bài hai tam giác bằng nhau 
HS : Vẽ hình , ghi gt . kl
A
1
2
C
800
300
B
D
GT ABC có 
 Phân giác AD ( D BC)
KL 
 ADC = ? ; ADB = ? 
Xét ABC : ( đl tổng 3 góc của tam giác)
 1800 - ( 800 + 300 ) = 700 
AD là phân giác của 
Xét ABD có ADB = 1800 
( theo đl tổng 3 góc của tam giác )
ADB = 1800 - ( 800+ 350) = 650
ADB + ADC = 1800 ( t/c 2 góc kề bù
ADC = 1800 - 650 = 1150
HS : Cả lớp làm 
A
2
1
2
1
B
C
Góc ngoài tại đỉnh B là góc B2 góc ngoài tại đỉng C là góc C2
Theo định lí ; 
C1: vuông AHI có góc H = 900
400 + ( định lí ) 
vuông KIB có góc K = 900 
x + ( định lí ) 
mà ( đối đỉnh) 
suy ra x = 400 
C2: AHI có ( đl tổng 3 góc của tam giác ) 
KIB có ( đl tổng 3 góc của tam giác) 
mà ( đối đỉnh) 
suy ra x = 400
vuông AEC ( )
( đl tổng 3 góc trong tam giác) 
vuông ADB ( ) 
HS :( đl tổng 3 góc trong tam giác)
 suy ra x = 250 
vuông MIN ( ) 
( đl) 
 suy ra x = 600 
vuông AHE ( )
 suy ra 
 x = HBK = 
 = 900 + 350 = 1250
GT ABC có 
 Ax là phân giác góc ngoài 
 tại A 
KL Ax // BC 
 Chứng minh 
Chỉ ra Ax và BC hợp với cát tuyến Ab tạo ra 2 góc so le trong ( đồng vị ) bằng nhau 
ABC có ( gt) ( 1) 
yAB = ( đl góc ngoài của tam giác ) 
Ax là phân giác của yAB 
suy ra ( 2) 
từ (1) và(2) suy ra 
mà và ở vị trí so le trong 
Tia Ax // BC ( theo định lí về đường thẳng song song ) 
hoặc là hai góc đồng vị 
IV Rút kinh nghiệm sau bài dạy
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
 Tiết 20: Hai tam giác bằng nhau
Ngày dạy: ././ 2010
A, Mục tiêu 
. Học sinh hiểu định nghĩa hai tam giác bằng nhau biết viết kí hiệu về sự bằng nhau của hai tam giác theo quy ước viết tên các đỉnh tương ứng theo cùng một thứ tự 
. Biết sử dụng định nghĩa hai tam giác bằng nhau để suy ra các đoạn thẳng bằng nhau các góc bằng nhau 
. Rèn luyện khả năng phán đoán nhận xét 
B, Chuẩn bị 
 GV: Thước thẳng, com pa, phấn màu, thước đo độ, bảng phụ 
 HS: thước thẳng, thước đo góc
C.Tiến trình dạy học 
Hoạt động của thầy
Hoạt động của trò
Hoạt động 1: Kiểm tra ( 7’)
A
A
B
C
B
C
Cho hai tam giác ABC và A’B’C’. Lên bảng thực hiện đo các cạnh và các góc của 2 tam giác 
? Học sinh khác lên đo lại kiểm tra 
GV: Hai tam giác ABC và A’B’C’ như vậy được gọi là hai tam giác bằng nhau => vào bài 
Hoạt động 2: 1, Định nghĩa ( 8’) 
ABC và A’B’C’ trên có mấy yếu tố bằng nhau ? Mấy yếu tố về cạnh? mấy yếu tố về góc ? 
ABC và A’B’C’ có AB = A’B’; AC = A’C’ ; BC = B’C’; ;
;
ABC và A’B’C’ là hai tam giác bằng nhau 
GV: Đỉnh tương ứng với đỉnh A là đỉnh A’ 
? Tìm đỉnh tương ứng với đỉnh B và C 
? Góc tương ứng với góc A là góc A’, cạnh tương ứng với cạnh AB là cạnh A’B’ tìm góc và cạnh tương ứng còn lại 
? Hai tam giác bằng nhau là hai tam giác như thế nào ?
? Đọc định nghĩa sgk
Hoạt động 3: 2, Kí hiệu ( 10’) 
? Đọc nhanh sgk mục 2
ABC = A’B’C’ nếu 
AB = A’B’ ; AC = A’C’ ; BC = B’C’
 ; ;
GV: Các chữ cái chỉ tên các đỉnh tương ứng được viết theo cùng thứ tự 
? Làm ? 2( bảng phụ) 
? Làm ?3 ( bảng phụ) 
ABC = DEF thì góc D tương ứng với góc nào ? 
Cạnh BC tương ứng với cạnh nào ? Hãy tính của ABC. Từ đó tìm số đo 
Hoạt động 4: Luyện tập củng cố (18’)
Bài 1: Các câu sau đúng hay sai( bảng phụ)
1, Hai tam giác bằng nhau là hai tam giác có 6 cạnh bằng nhau, 6 góc bằng nhau 
2, Hai tam giác bằng nhau là hai tam giác có các cạnh bằng nhau các góc bằng nhau 
3, Hai tam giác bằng nhau là hai tam giác có diện tích bằng nhau 
GV: đưa phản ví dụ cho mỗi câu 
Bài 2: Cho XEF = MNP có 
XE = 3 cm ; XF = 4 cm, NP = 3,5 cm
? Tính chu vi mỗi tam giác 
? Bài toán cho biết gì ? hỏi gì ?
? Cách tính như thế nào ?
Hoạt động 5: Hướng dẫn về nhà (2’) 
Học thuộc, hiểu định nghĩa hai tam giác bằng nhau 
Biết viết kí hiệu 2 tam giác bằng nhau một cách chính xác 
Làm các bài tập 11-14 ( sgk) 
Bài 19 - 21 ( sbt) 
Ghi kết quả 
AB = ... ; Ac = ... ; BC = ...
A’B’ = ... ; A’C’ = ... ; B’C’ = ...
 ; ... ; ...
 ... ; = ... ; = ... 
ABC và A’B’C’ trên có 6 yếu tố bằng nhau, 3 yếu tố về cạnh, 3 yếu tố về góc 
Hai đỉnh B và B’ ; C và C’ gọi là hai đỉnh tương ứng
Hai góc B và B’; hai góc C và C’ gọi là hai góc tương ứng 
Hai cạnh BC và B’C’ ; AC và A’C’ gọi là hai cạnh tương ứng 
Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau 
Đọc sgk 
Nghiên cứu sgk 
a, ABC = MNP 
b, Đỉnh tương ứng với đỉnh A là đỉnh M 
Góc tương ứng với góc N là góc B 
cạnh tương ứng với cạnh AC là cạnh MP 
c, ACB = MPN
AC = MP ; 
 tương ứng với 
Cạnh BC tương ứng với cạnh EF
Xét ABC có ( định lí tổng 3 góc của tam giác )
 + 700 + 500 = 1800 
 = 600
suy ra = = 600
Câu 1. sai 
Câu 2.sai 
Sửa lại : Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau các góc tương ứng bằng nhau 
Câu 3. sai 
GT XEF = MNP có
 XE = 3 cm ; XF = 4 cm, 
 NP = 3,5 cm
 Kl Chu vi XEF; MNP
Vì XEF = MNP ( gt) 
XE = MN ; XF = MP ; EF = NP 
suy ra MN = 3 cm ; MP = 4 cm
EF = 3,5 cm 
Chu vi XEF = 3 + 4 + 3,5 = 10,5cm
Chu vi MNP = 10,5 cm
IV Rút kinh nghiệm sau bài dạy
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Tài liệu đính kèm:

  • docH T10.doc